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Abstract. Granular materials may exhibit different pattern forming behaviors, depending on
the average energy per grain. Various granular flow PDE models exist, each capturing different
behaviors of the physical phenomenon. In the present work we investigate the model and
parameter identification problem of different continuous granular flow models as an encapsulated
optimization problem. The identification problem is then split in a series of inverse problems.
For the discrimination of the different models, the Fisher information matrix is used and different
optimality criteria are discussed. Basic concepts of algorithmic differentiation (AD), which is
used for the computation of the sensitivity matrix, are also given. The PDEs are discretized by
the finite element method.

1. Introduction
Different approaches exist for the modeling of granular flow, from discrete to continuous ones,
see [1, 6]. In this work we are going to present a process for identifying continuous models,
see e.g. [2, 7, 9], from a certain class of nonlinear hyperbolic PDEs. In the following, the class
of nonlinear hyperbolic PDEs is presented. In Section 2 the numerical solution approach is
presented, i.e. the leapfrog method for the time integration and the finite element method for
the space discretization. In Section 3 the process of model identification is presented, from the
sensitivity and the covariance matrix to the Fisher information matrix, see e.g. [3], as well as
the different optimality criteria and the data fitting problem. In Section 4 a short description of
the algorithmic differentiation [5, 10] is given, which is necessary for the efficient computation
of the sensitivity matrix. Finally, conclusions are given.

In the following Figure 1 a model of granular matter piling is shown. The nonlinear hyperbolic

h

u = p
x

standing
layer

moving 
layer

Figure 1. Granular matter
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equations that model the continuous granular flow are given [6]:

ht = ∇(h∇u) + (|∇u| − 1)h + s, (1)

ut = (1 − |∇u|)h. (2)

where u is the height of the standing layer, h is the height of the moving layer, and s a source
term. In [1] it is assumed that ∇u > 0 and the change of variables ∇u = p takes place. Here,
we generalize the system of equations acquired in [1], by the addition of some to-be-identified
parameters, into the following ones:

ht = a11 · ∇h + a12 · ∇p + b11 · (p∇h) + b12 · (h∇p) + c11h + c12p + d1hp + s, (3)

pt = a21 · ∇h + a22 · ∇p + b21 · (p∇h) + b22 · (h∇p) + c21h + c22p + d2hp. (4)

In the above system of PDEs, the parameters aij, bij, cij , di for i, j = 1 . . . , 2, are to be
determined during the model identification process. Again, s is a known source term.

2. Numerical solution of PDE
The previous system of nonlinear hyperbolic equations can be solved by the finite element
method, see [4], for the space discretization and the leapfrog method for the time discretization.

2.1. Time integration

By using the leapfrog method the time derivative is approximated by:

u(tn+1) = u(tn−1) + 2∆tut(t
n) + O(∆t3). (5)

The leapfrog method is a second-order accurate explicit time-stepping scheme. Moreover, the
leapfrog method is symplectic in time. The system of nonlinear hyperbolic equations (3) and
(4) is then discretized into:

hn+1 − hn−1

2∆t
= g1(h

n, pn,∇hn,∇pn) + sn, (6)

pn+1 − pn−1

2∆t
= g2(h

n, pn,∇hn,∇pn), (7)

where g1, g2 are the right-hand-side functions of equations (3) and (4).

2.2. Finite Element Method

The computational domain Ω is discretized into elements Ωe, such that:

Ω̄ =

nel
⋃

e=1

Ω̄e, and Ωe
⋂

Ωf = ∅ for e 6= f,

where Ω̄ denotes the closure of Ω. The isoparametric representation of the solution is given with
the help of the shape functions by:

{

x
y

}

=

nen
∑

a=1

Na(ξ, η)

{

xa
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}

, uh(x, y) ≡ uh(ξ, η) =

nen
∑

a=1

Na(ξ, η)ua.

The shape functions together with the transformation, for space dimensions nsd = 2, are given
schematically in the following Figure 2.
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Figure 2. Isoparametric mapping

Shape functions:
N1 = 1

4(1 − ξ)(1 − η)

N2 = 1
4(1 + ξ)(1 − η)

N3 = 1
4(1 + ξ)(1 + η)

N4 = 1
4(1 − ξ)(1 + η)

3. Model identification
In this Section we are going to present the model identification process, see e.g. [2, 3, 7, 9],
as shown in the Figure 3 below. Because experiments are time-consuming and in most cases
expensive, we need methods where the number of experiments, needed for the identification of
the best model describing a physical phenomenon, is minimized. This means that we know
where to measure in order to increase the content of information of each experiment. Moreover,
we need to quantify the influence of uncertainties on model parameters.

Assuming there are several possible modeling approaches, for k = 1, . . . , nf :

yk = fk(x,θ), (8)

where x = (x1, . . . , xnx) are the independent variables, and θ = (θ1, . . . , θnθ
) are the parameters

of model k.
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Figure 3. Model identification process

In our case yk = fk(x,θ) is not an explicitly given model, but comes from the solution
of the system of PDEs. The objective of this model identification process is to find which
modeling approach with which model parameters describes the experiment most accurately.
The parameters of each model are identified by solving a least-squares problem, which is the
inverse problem in the above Figure 3, with the following objective function:

min
θk

Φk(θk) =
m

∑

i=1

(yexp − yk(xi, θk))
T V−1(yexp − yk(xi, θk)). (9)

In the above minimization problem, Φk is the weighted residual for model k after m experiments,
yexp are the experimental data, yk are the data from model k, xi are the independent variables,
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θk are the parameters of model k, V is the covariance matrix of measurement error. The
minimization method used can be either a general SQP or a more specialized Levenberg-
Marquardt method.

The model dependence with respect to the parameters θ at different measurement points
xi for i = 1, . . . ,m is given by the sensitivity matrix:
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, (10)

where nθ is the number of model parameters, and m the number of measurement points.
The covariance matrix, containing the standard deviations of experimental responses is given,

for i, j = 1, . . . ,m measurement points, by:

V =










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1,1 σ2

1,2 . . . σ2
1,m
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...

. . .
...
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. (11)

It can be safely assumed that the error in measurement i is independent from measurement j.
In this case the inverse covariance matrix is the diagonal matrix:

V−1 =















1
σ2

1,1

0 . . . 0

0 1
σ2

2,2

. . . 0

...
...

. . .
...

0 0 . . . 1
σ2

m,m















. (12)

The information measure for model k is then given by the Fisher information matrix:

Fk = QT
k V−1Qk, (13)

where V is the covariance matrix of the measurement error and Qk is the sensitivity matrix
of model k. The Fisher information matrix Fk must be “optimal” and for this reason different
optimality criteria exist [9], according to the invariant of F:

I
(1)
F = λ1 + λ2 + · · · + λp = tr(F),−→ A-Optimality,

I
(2)
F = λ1λ2 + λ1λ3 + · · · + λp−1λp,

...

I
(k)
F =

p
∑

o1<o2<···<ok

λo1
λo2

. . . λok
,

...

I
(p)
F = λ1λ2 . . . λp = det(F),−→ D-Optimality.

2nd International Conference on Mathematical Modeling in Physical Sciences 2013 IOP Publishing
Journal of Physics: Conference Series 490 (2014) 012206 doi:10.1088/1742-6596/490/1/012206

4



A−optimality

E−optimality

D−optimality

θ1
θ 2

Figure 4. Geometric interpretation of different optimality criteria.

The geometric interpretation of some of the above optimality criteria is shown in Figure 4. The
D-Optimality represents the volume of ellipsoid, and the E-Optimality represents the longest
diagonal. Generally, one could also use a linear combination of the the above criteria, leading
to a multiobjective optimization problem, but such a case is not assumed in this work.

The overall efficiency of the models is given by [2]:

ζk(θ) =
[ηk(θ)

η∗(θ)

]1/nθ

, (14)

where η∗ = maxk(ηk(θ)), and 1/nθ is a scaling factor for models with different number of
parameters. Following this approach, one can also “design” the point at which the next
measurement takes place, in order to maximize the information content of each experiment.

4. Algorithmic Differentiation (AD)
The main question that has to be answered regarding the computation of the jacobian matrix
needed for the inverse problem and the sensitivity matrix is which method to use for their
computation. One can choose from implementing the analytical derivatives manually, using a
symbolic differentiation (via Computer Algebra Systems), using divided differences, and finally
using an automatic (algorithmic) differentiation method. In [8] a symbolic differentiation
approach with automated code generation was followed. In this work, an algorithmic
differentiation [5, 10] is applied. The dilemma when selecting the step size of the divided
differences is that the truncation error is small, when h small, and the loss of significance is
small, when h big. However, in exact arithmetic AD is also exact! This approach [10] is based
on a combination of univariate Taylor polynomial arithmetic and matrix calculus in the combined
forward/reverse mode.

5. Conclusions
In this paper we have presented a framework for the model identification of continuous
granular flow models. The overall process is driven by the Fisher information matrix. The
model parameters are identified by the solution of a least-squares inverse problem. For the
computation of the jacobian matrix of the inverse sensitivity matrix an algorithmic differentiation
methodology is applied. Finally, the system of PDEs is discretized by the finite element method
and solved with the leapfrog method.
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