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Abstract. In this work, the quantum operator approach is applied to both, the position-
dependent mass Schrödinger equation (PDMSE) and the Schrodinger equation with constant
mass (CMSE). This fact enable us to find the factorization operators that relates both
Hamiltonians by means of a kinetic energy operator that comes from the proposal of Morrow
and Brownstein. With this approach is possible to find the exactly-solvable PDMSE, for any
value of the parameters α and γ in the von Roos’s Hamiltonian. For that, our proposal can
be considered as a unified treatment of the PDMSE because it contains as particular cases,
the kinetic energy operators of various authors such as BenDaniel-Duke, Gora-Williams, Zhu-
Kroemer and Li-Kuhn among others. To show the usefulness of our result, we show the solvable
PDMSE that comes from the harmonic oscillator potential model for the CMSE. The proposal
is general and can easily be extended to other potential models and mass distributions which
will be given in the extended paper.
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1. Introduction.

The position-dependent mass Schrödinger equation (PDMSE) has been of recent interest for its
applications in fields such as condensed matter theory [1],[2], heterostructures [3],[4], nuclear
clusters [5],[6] and DFT related problems [7],[8]. At this regard, different proposals of the
kinetic energy operator have been given as for example, the BenDaniel and Duke [9], the Gora-
Williams [10], the Zhu-Kroemer [11], Li-Kuhn [12], and so on. However, each proposal has been
worked individually by means of standard approaches. For that, in this work we propose a
unified treatment of the PDMSE which includes as particular cases, already published results.
To this aim, the quantum operator method is applied to the PDMSE and the constant mass
Schrodinger equation (CMSE) with the purpose to relate factorization of both problems. This
correspondence allows to construct a unified treatment to generate solvable PDMSE starting
from known solutions of CMSE, as it will be seen next.

2. Quantum Operator Method to the PDMSE.

Let us consider the position-dependent mass kinetic energy operator [13]

T(α,γ) =
1

2

[
mα pmβ pmγ +mγ pmβ pmα

]
, (1)
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where m = m(x) = M(x)/2m0 is the non-dimensional mass operator, m0 is the mass of the
involved particle, p = −ih̄ d/dx is the linear momentum operator and α+β+ γ = −1. We have
selected the natural unit system with h̄ = 2m0 = 1. In order to display a simple and symmetrical
factorization of the PDMSE we will follow the proposal of Morrow and Brownstein [14] who have
argued that position-dependent mass Hamiltonians of physical interest must comply with the
condition α = γ; then, previous operator has the form T(α,γ) =

(
mα pmβ/2

) (
mβ/2 pmα

)
. By

choosing β/2 = α = −1/4 we will have operators A0, A
†
0 in terms of a single power of the mass

operator. This selection corresponds to the kinetic energy operator T = T(−1/4,−1/4) factorized

in the form T = A†0 A0, with

A†0 = −η
d

dx
η, A0 = η

d

dx
η, (2)

where
η = (2m)−1/4 . (3)

Consequently, in this case the PDMSE is written as

H ψ(x) = (T + V (x)) ψ(x) = E ψ(x) (4)

where the Hamiltonian H is factorized as H = A† A by means of

A = η
d

dx
η +W (x), A† = −η

d

dx
η +W (x), (5)

on condition that

V (x) =W (x)2 − η2
d

dx
W (x) (6)

where W (x) is a superpotential.
Next, by defining A as the annihilation operator such that Aψ0 = 0, which is

η Aψ0 = η2
d

dx
(η ψ0) +W (x) (η ψ0) = 0, (7)

where ψ0 represents the ground-state wavefunction, it is possible to find the suitable variable
change needed to conect the PDMSE with the CMSE in an new variable u. In fact, similarly to
equation (7) the operator a applied to the ground-state wavefunction of the CMSE Hamiltonian
reads

aφ0 =
d

du
φ0 +w(u)φ0 = 0, (8)

where w(u) is the corresponding superpotential, φ0 is their ground-sate wavefunction and a is
the annihilation operator. This one and the a† creation operator are

a =
d

du
+w(u), a† = −

d

du
+w(u), (9)

which factorize the CMSE hamiltionian h in the form h = a† a when relation between potential
v(u) and superpotential w(u) is

v(u) = w2(u) +
d

du
w(u). (10)

The comparison of equation (7) and equation (8) compels to the change of variable

d

du
= η2

d

dx
, u(x) =

∫ x

η−2(x)dx, (11)

2nd International Conference on Mathematical Modeling in Physical Sciences 2013 IOP Publishing
Journal of Physics: Conference Series 490 (2014) 012201 doi:10.1088/1742-6596/490/1/012201

2



to the similarity transformation connecting both wavefunctions

ψ0(x) = η−1(x)φ0(u(x)), (12)

to the relation between operators η A = a η and to the relation between the superpotentials

w(u(x)) =W (x). (13)

To complete the algebra, it can be verified by means of the equations (5, 9-12) that η A† = a†η.
Consequently, one is able to define the operator algebra

a† = η A†η−1, a = η Aη−1, (14)

allowing to change the CMSE operators a and a† into the PDMSE operators A and A† and to
change variable u into variable x, or viceversa. That is, for the CMSE and PDMSE hamiltonians

h = a† a = η A† Aη−1 = η Hη−1, H = η−1 hη. (15)

So, let us consider the CMSE
hφn = εnφn, (16)

where εn is the corresponding energy spectra and φn the eigenfunctions. Similarly to equation
(12), the use of

φn = η ψn, ψn = η−1φn, (17)

and equations (15,16) lead to
H ψn = En ψn, (18)

indicating that εn = En. Finally, from equations (6,10,11,13) it is obtained the relation between
the PDMSE and CMSE potentials

V (x) = v(u(x)), v(u) = V (x(u)). (19)

where x(u) is the inverse function of u(x).

3. Resolution of the PDMSE for the von Roos’ Hamiltonians.

In this section we identify solvable potentials for any other PDMSE Hamiltonians. For that
purpose, let us consider the Hamiltonian H(α,γ) with kinetic energy operator given in equation
(1) and potential V(α,γ)

H(α,γ)ψ (x) =
(
T(α,γ) + V(α,γ)

)
ψ (x) = E ψ (x) , (20)

where as usual E and ψ (x) are the eigenvalues and eigenfunctions respectively. To reduce the
above equation to equation (18), is assumed that kinetic energy operators differ in a function of
the position U(α,γ) = T(α,γ) − T , it becomes

U(α,γ) = (4α+ 1) (4γ + 1) η
2η′2 +

(
α+ γ +

1

2

)
η2
(
η2
)′′
. (21)

Equation (20) can be transformed in the form of equation (18) provided that

V (x) = V(α,γ) + U(α,γ) (22)

which is a general result containing some outstanding particular cases such as those displayed
immediately.
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Solvable PDMSE with BenDaniel-Duke kinetic term.

With the BenDaniel-Duke proposal α = γ = 0, the kinetic energy operator becomes T(0,0) =
p
(
1
2m

)
p such that the PDMSE is

−
d

dx

(
1

2m(x)

)
d

dx
ψ +

(
V(0,0)(x)−E

)
ψ = 0. (23)

For any solvable v(u) of the CMSE, the corresponding solvable V(0,0) from equations (19,21,22)
becomes

V(0,0) = V (x)− η2
(
η′
)2 −

1

2
η2
(
η2
)′′
. (24)

Solvable PDMSE with Gora-Williams kinetic term.

Similarly to the above case, now α = −1 and β = γ = 0 for which, from equations (19,21)

V(−1,0) = V (x) + 3η2η′2 +
1

2
η2
(
η2
)′′

(25)

Solvable PDMSE with Zhu-Kroemer kinetic term.

Now, the parameters selection correspond to α = −1/2, β = 0 and γ = −1/2 for which

V(−1/2,−1/2) = V (x)− η2η′2 +
1

2
η2
(
η2
)′′

(26)

Solvable PDMSE with Li-Kuhn kinetic term.

Accordingly with α = 0 and β = γ = −1/2, the solvable potentials are obtained from

V(0,−1/2) = V (x) + η2η′2. (27)

The usefulness of the proposal is shown with the treatment of the PDMSE that comes from
the harmonic oscillator potential model for the CMSE. That is, by considering the potential
V (u) = κ2u2 − κ and superpotential ω(u) = ku, with eigenvalues En = 2nκ, n = 0, 1, 2 . . ., and
eigenfunctions given by

φn(u) =

√ √
κ

2nn!
√
π
e−κu

2/2Hn
(√

κu
)
. (28)

Let us consider the mass function

m(x) =
1

2

(
1 +

δ

x2 + 1

)2
, (29)

which from equation (3) leads to η =
(
1 + δ/

(
x2 + 1

))−1/2 and from equation (11) to the
variable change u = x + δ arctanx. Consequently, the PDMSE with Hamiltonian H given in
equation (18) has the solvable potential V (x) = κ2 (x+ δ arctanx)2 − k, with eigenfunctions

ψn(x) = η−1φn(x+ δ arctanx)

=

√ √
κ

2nn!
√
π

(
1 +

δ

x2 + 1

)1/4
eκ(x+δ arctanx)

2/2

×Hn
(√

κ (x+ δ arctanx)
)
, (30)

and eigenvalues En = 2nk. The solvable potentials that match with the most common
Hamiltonians H(α,γ) of equation (20) have been calculated and presented in table 1.
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Table 1. The solvable potentials for some values of parameters in the kinetic energy PDMSE
operator.

Author α γ V(α,γ)

BenDaniel-Duke 0 0 κ2 (x+ δ arctanx)2 − κ− δ(δ+2x2δ−2x2−3x4+1)
(x2+δ+1)4

Zhu-Kroemer −1/2 −1/2 κ2 (x+ δ arctanx)2 − κ− δ(2x2+3x4−δ−1)
(x2+δ+1)4

Gora-Williams −1 0 κ2 (x+ δ arctanx)2 − κ+ δ(δ+4x2δ−2x2−3x4+1)
(x2+δ+1)4

Li-Kuhn 0 −1/2 κ2 (x+ δ arctanx)2 − κ+ x2δ2

(x2+δ+1)4

Concluding Remarks

In order to solve the PDMSE from exactly solvable CMSE potentias, we have proposed a
quantum operator treatment applied to PDMSE and to CMSE Hamiltonians. This can be
considered as an improvement when compared with standard methods developed for the same
purpose. Furthermore, our proposal is general and contains, as particular cases, the kinetic
energy operators of various authors. As a useful application of our proposal, we have considered
the solutions of the PDMSE by means of the CMSE with harmonic oscillator potential. However,
the proposal is general and can be extended to other potential models and mass distributions
as will be published elsewhere.
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