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Abstract. The development of efficient artificial nanodevices poses challenges which are of
fundamental and technological nature. Recent progress has been made in the context of finite-
time thermodynamics. A central question in finite-time thermodynamics is to identify the
optimal procedure to extract the greatest amount of work from a system operating under
well-defined constraints. For externally controlled small systems, the optimal driving protocol
maximizes the mean work spend in a finite-time transition between two given system states
under the constraints of given initial and final energy values, and a fixed total operation time.
For simplicity we consider an externally controlled single level system, which is embedded in a
thermal environment and coupled to a particle reservoir. The optimal protocols are calculated
from a master equation approach for different system-reservoir couplings. For open systems, the
system-reservoir couplings are shown to have a striking influence on the optimal driving setup.
We point out that the optimal protocols have discontinuous jumps at the initial and final times.
Finally, this work provides a first attempt to extend these calculations to larger system sizes.

1. Introduction
A good theoretical understanding of the optimal control of energy conversion processes is a
prerequisite for tailoring efficient artificial nanodevices for specific needs. Typical examples are
soft and biomatter systems, such as Brownian or molecular motors, organic photovoltaic solar
cells and quantum dots. With minimization of the system size thermal fluctuations become
relevant and the non-equilibrium behavior of such systems depends strongly on the driving
forces and the changes of one system state to another, which are inherently finite in time. Thus,
thermodynamic processes take place in finite time and the thermodynamic quantities like heat
and work are now random but still fulfill a stochastic energy balance. In these systems it is useful
to introduce microscopic heat and work quantities as random variables whose averages lead to
the common thermodynamic quantities. Averages over functions of these microscopic heat
and work quantities yield generalized fluctuation theorems (for reviews, see [1], and references
therein). A common feature of many artificial nano-sized devices, where fluctuation theorems
can be applied, is that those are mostly driven by time-varying external fields (often called as
protocol) or electrochemical potential differences.

Of particular importance of this class of non-equilibrium systems is to identify the optimal
procedure to extract the greatest amount of work from the device operating under given
constraints [2]. Only a few studies so far have addressed the problem of identifying the optimal
protocol that yields the minimum amount of work done on the system, which is required to drive
a nano-scale system from one equilibrium state to another in finite time [2, 3, 4, 5]. Note that
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this formulation is in reverse to the quest for the optimal protocol that provides the greatest
amount of work from the artificial device. Whether on a continuous (Langevin equation) or a
discrete (master equation) state space, a surprising result of all these studies is that the optimal
protocol exhibits sudden jumps at the beginning and at the end of the thermodynamic process,
while in between the optimal protocol varies smoothly. It can be argued that the initial jump in
the optimal protocol is an immediate jump from equilibrium to a stationary state and the final
jump allows a slower driving of the system at earlier times.

Here, we address a similar question on optimal driving setups. The focus of this work is on
the couplings of the system to reservoirs, which have a strong influence on the specific form of
the optimal protocol. To keep the analysis conceptual simple, we consider as working medium
a single level system driven by a time-dependent protocol. We apply an optimization procedure
based on a variational analysis. This allows us to get an analytic expression of the optimal
protocol with respect to different system-reservoir couplings.

2. Model
We consider a single level system as working medium of an artificial nanodevice, in contact
with a particle reservoir at temperature T , which is characterized by the chemical potential
µ. The site energy ε(t) is assumed to be time-dependent, which can be modified between an
initial value ε0 and a final value ε1 by an external agent according to a given protocol. In what
follows, it is convenient to introduce the energy difference ϵ(t) = ε(t) − µ(t). The population
of the single level at time t is characterized by the occupation probability p(t). The system
dynamics is modeled by a master equation approach with time-dependent rates w1(t) and w2(t)
[6, 7, 8, 9, 10] accounting for the time evolution of the occupation probability p(t),

ṗ = −w1(t)p(t)− w2(t)(1− p(t)) . (1)

We assume that these transition rates obey detailed balance at each time instant.
Due to the time-varying of the site energy ϵ(t), positive or negative energy flows into the

system. From the thermodynamic point of view the time derivative of the internal energy
E(t) = ϵ(t)p(t) is the sum of a work flow Ẇ = ϵ̇(t)p(t) and a heat flow Q̇ = ϵ(t)ṗ(t).
During the process time τ the energy change obeys the statistical mechanics formulation of
the first law of thermodynamics, ∆E(τ) = Q(τ) + W (τ), where ∆E(τ) =

∫ τ
0 dt Ė(t) =

E(τ)− E(0) ≡ ϵ(τ)p(τ)− ϵ(0)p(0) with ϵ(0) = ϵ0 and ϵ(τ) = ϵ1. The occupation probability of
the equilibrium state at the beginning is p(0) = [eβϵ0 + 1]−1 with β = 1/kBT . Accordingly, we
have W =

∫ τ
0 dt ϵ̇(t)p(t) and Q =

∫ τ
0 dt ϵ(t)ṗ(t). Both work W and heat Q can be interpreted

as functionals of the occupation probability and thus depend, in particular, on the realized
transition path. If W (t) < 0, the work −W (t) is done by the system on the environment.

The details of the system-reservoir coupling determine decisive the exchange of particles
between the reservoir and the system [11]. This is reflected in the form of the transition rates.
In order to proceed, we need to specify these transition rates consistent with the detailed balance
condition. In a quantum dot coupled to a metal lead, the rates w1(t) and w2(t) are Glauber
(Fermi) rates [4], i. e., w1(t) = C[e−βϵ(t) + 1]−1 and w2(t) = C[eβϵ(t) + 1]−1. C is the inverse
of a characteristic time scale involve in the exchange of particles between the reservoir and the
system. We adopt here symmetric rates w1(t) = Ceβϵ(t)/2 and w2(t) = Ce−βϵ(t)/2. Symmetric
transition rates are widely used in biomatter or ionic systems [12, 8].

3. Calculation of optimal driving protocols
In order to calculate the optimal driving protocol ϵ(t) which minimizes the work for the given
constraints ϵ0, ϵ1, p(0), and τ , we apply the proposed procedure given in Reference [4]. To
minimize W = ∆E − Q we have to minimize ∆E and maximize Q simultaneously Since ∆E
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depends only on p(τ), we need to maximize the heat Q. The essential steps of this procedure
are: (i) find the protocol that gives the maximum heat Q for a given value of p(τ) and (ii)
conduct the optimization with respect to the final state p(τ). To this end we rewrite the heat as
Q =

∫ τ
0 dtL(p, ṗ) with L(p, ṗ) = ϵ(t)ṗ, because ϵ(t) can be expressed as function of p(t) and ṗ(t).

A variational analysis δ
∫
Ldt = 0 leads to the Euler-Lagrange equation L− ṗ∂L

∂ṗ ≡ −ṗ2 ∂ϵ
∂ṗ = K̃.

Here K̃ is the constant of integration. For symmetric rates the Euler-Lagrange equation reads

± 2(ṗ/C)2√
(ṗ/C)2 + 4p(1− p)

= K , (2)

where K = K̃β/C. Equation (2) is a quartic equation with respect to ṗ, which has two real

(physical) solutions ṗ/C = ±1
4

√
2K2 + 2

√
K4 + 64K2p(1− p) and two imaginary solutions.

From these two first-order differential equations one can calculate p(τ) for given p(0) and τ via

Cτ = ±
p(τ)∫

p(0)

dp

1
4

√
2K2 + 2

√
K4 + 64K2p(1− p)

(3)

as function of K. Subsequently, p(τ)|K can be used to maximize the heat Q with respect to K
by performing the integration

βQ|K =

p(τ)∫
p(0)

dp ln

[
A(p,K) +B(p,K)

16p2
±
√

2K2D(p,K) + 2A(p,K)B(p,K)

16p2

]
, (4)

where A(p,K) = K2+16p(1−p), B(p,K) =
√

K4 + 64K2p(1− p), and D(p,K) = K2+48p(1−
p). Here, the K-dependent protocol ϵ can be rewritten with respect to p. Finally, we are able
to optimize the work W |K = ∆E|K −Q|K = ϵ1p(τ)|K − ϵ0p(0)−Q|K with respect to K.

4. Results and discussion
In the calculation discussed below, the following choice of parameters was used: C = 1, β = 1,
ϵ0 = 10, and ϵ1 = 0. Let us first take a closer look at the optimal protocol for symmetric rates as
function of the processing time t for different values of K. To this end we calculate Equation (4)
with the upper sign (+) by using Equation (3) with the lower sign (-) for downward processes.
In this case, work is done by the system on the environment. Figure 1(a) shows both the
optimal protocol (black solid line) and three non-optimal protocols as function of the processing
time t. We can clearly identify jumps of the protocol at the beginning and at the end of the
process. As seen in Figure 1(b), an initially almost empty systems is populated with particles
with increasing time. The protocol controls how fast this single level can be occupied. Figure 2
shows the optimal protocol for fast (τ = 1) and slow (τ = 10) processes. We observe that the
associated value of Kopt is larger for fast processes than for slow processes.

Thus, to understand the meaning of the parameter K, we square equation (2). By using
evolution equation (1) with symmetric rates we arrive, after sorting with respect to p, at a
quartic equation, which has two real and two complex conjugated roots. The two real roots read

p(t) =
1

eβϵ + 1

(
1 +

K

4
eβϵ/2 tanh(βϵ/2)±

√
K2

8
eβϵ tanh2(βϵ/2) +

K

2

eβϵ

cosh(βϵ/2)

)
. (5)

Equation (5) expresses the occupation probability as function of the protocol ϵ and K.
If we assume a different system-reservoir coupling, say Fermi rates, the form of p(t) [4]
is quit different from those given in Equation (5). This emphasizes that the nature
of the system-reservoir coupling has a striking influence on the optimal driving setup.
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Figure 1. System properties for the case, in which the energy level is lowered from ϵ0 = 10 to
ϵ1 = 0 as function of time t starting from t0 = 0 until t1 = 10; (a) protocol and (b) occupation
probability. An optimal protocol (black solid line) can be identified with minimum cumulated
work W = −0.628 for Kopt = 0.0059 and the total available time τ = t1 − t0 = 10.
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Figure 2. The optimal protocol for τ = 1
(Kopt = 0.17) and τ = 10 (Kopt = 0.0059)
as function of time t.

If K = 0, p(t) is the equilibrium distribution
of a single level system. This implies that K =
0 coincides with a quasistatic process control.
Consequently, the parameter K quantifies how far
the system differs from the quasistatic limit.

In order to extent these investigations to
large systems, we consider the simplest case, in
which a system with N sites and energies ϵl(t)
interacts with a particle reservoir at temperature
T . Particles can only enter or leave each level
and we assume that no transitions between site l
and site k take place. Thus, the internal energy
of the system is given by an additive principle,
E(t) =

∑
l ϵl(t)pl(t), and the time-derivative of

E(t) yields Ẇ+Q̇ with Ẇ =
∑

l Ẇl =
∑

l ϵ̇l(t)pl(t)

and Q̇ =
∑

l Q̇l =
∑

l ϵl(t)ṗ(t). In this special case
the application of the variational analysis presented in Section 3 is straightforward in order to
get the optimal setup of large systems.
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