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Abstract. In this article, we give a different mathematical approach for background aspects of
grazing incidence x-ray fluorescence, gixrf for short. Our contribution comes from an applied
point of view, in order to have a computer program to simulate the fluorescence intensity from
a stacking of thin layer films. A typical ill-posed inverse problem is formulated. Our aim is to
reconstruct the fluorescence intensity for a variety of grazing angle measurements. We rederive
some classical equations pointing out the numerical aspects of the inversion procedure and giving
new directions for direct in inverse algorithms.

1. Introduction
Grazing incidence x-ray fluorescence - gixrf - experiments are used to study the propagation
of electromagnetic waves in a stratified media. The fluorescence yield by wave penetration at
glancing incidence above the critical angle, provides information about the upper layers. The
theory for gixrf is beyond the scope of this article. For a complete description of the main
equations and physical properties we refer to [1, 2, 3, 4]. A typical layered media, representing
a thin-film with 5 layers, is shown in figure 1. Interfaces separating each layer are marked at the
left, starting from 1 to 6. The eletromagnetic source is placed at vacuum, and is represented
by the asterisk in figures 1 and 2. In this short example, the incoming wave strikes the first
interface with a grazing angle θ. Assuming θ above the critical angle, the electromagnetic wave
penetrates in the medium, were reflected and transmitted waves propagates according to Snell’s
law. If θ varies within a short interval, containing the critical angle, we have a family of waves
striking the first interface, propagating through layers, and coming back to the surface, were the
fluorescence intensity is finally measured, as depicted in figure 2. In general, we denote Σj as
the jth interface separating layer j and j� 1. Each layer has a complex refraction index nj and
the pair paj , bjq P C at each interface denote the amplitude of the incident and reflected wave at
Σj .

Each layer is a composition of many chemical elements, say copper, cobalt, zinc, gold, among
others. According to the scattering theory [1, 3], the total fluorescence intensity for a given
element m is given by

Fmpθ,uq �
Ņ

j�1

cmjpuq

» hj

0

fjpz, θ,uqe
�dmjpuqzdz, fjpz, θ,uq � |ajpθ,uqe

ikzpjpθq � bjpθ,uqe
�ikzpjpθq|2, (1)

with cmjpuq and dmjpuq appropriate physical constants, dependent on the parameter u P RN .
Each entry of the vector f � pfjq P RN represents the incident fluorescent intensity at the layer

2nd International Conference on Mathematical Modeling in Physical Sciences 2013 IOP Publishing
Journal of Physics: Conference Series 490 (2014) 012149 doi:10.1088/1742-6596/490/1/012149

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



Figure 1. Single x-ray incidence Figure 2. Total x-rays incidence

j, whereas h � phjq P RN is the thickness of the jth layer and | � | stands for the complex
modulus. Function θ P Θ ÞÑ Fmpθ,uq P R is a real-valued function of the angle θ. In pratice, a
measure of total fuorescence Fm is obtained, say tq1, q2, . . . , qvu satisfying Fmpθkq � qk (at least
hypothetically), θk P Θ. The mathematical challenge can be stated as the following non-linear
fitting problem:

Problem r♠s: Find u P RN such that qk � Fmpθk,uq is minimized.

There are many optimization techniques to solve the above non-linear least squares problem,
for instance the Gauss-Newton or the Levenberg-Marquardt method. Like most of the
iterative approaches, we find a sequence tuku converging to the approximated solution, and
the computation of each iterate strongly depends on the value Fmpθ,u

kq, for a given θ. The
parameter u could be the vector of layer thickness u � h, or the concentration of a given element
within each layer.

2. The direct problem
We aim at calculating the function value Fmpθ,uq, for a fixed pair pθ,uq, through (1). Let us
denote the inner integral in (1) by `jmpθ,uq. It is easy to note that `jm resembles a Laplace
transform of function fj and it is easily calculated using a quadrature formula. Before that,
we have to evaluate function fj , which is dependent on the amplitude values aj and bj . From
the matrix formalism [1, 3, 4, 5], these amplitudes are given by the Fresnel equations and the
principle of reversibility:$&

%
νjaj � νjrjbj � aj�1tj � 0

rj
νj

aj �
1
νj

bj � bj�1tj � 0
ô

�
aj�1

bj�1

�
�

1

tj

�
νj 0
0 1

νj

� �
1 rj
rj 1

� �
aj
bj

�
, νj � exp

�
i
2π

λ
pjhj



(2)

where tj , rj are the transmission and reflection coefficients1 at Σj , respectively. As stablished
in the literature, the matrix relation in (2) is used to find paj , bjq in terms of paj�1, bj�1q in a
recursive way, see [3, 5, 6]. Now, we take a different approach. Let us write down the Fresnel
equations in (2), with index j varying from 1 to N � 1. To make easier the equations, we
suppose N � 2; the generalization will go straightforward. In the absence of reflected waves at
the substrate, i.e., bN�1 � 0, we will have:�

�������

ν1 0 0 0 r1ν1 0
�t2 ν2 0 0 0 r2ν2
0 �t3 ν3 0 0 0
r1
ν1

0 0 �t1
1
ν1

0

0 r2
ν2

0 0 �t2
1
ν2

0 0 r3
ν3

0 0 �t3

�
�������

�
������

a1
a2
a3
b0
b1
b2

�
������ �

�
�������

a0t1
0
0

�b3
1
ν3

0
0

�
�������

ô

�
HU Q
D HL

�
looooooooomooooooooon

matrix L

�
a
b

�
loomoon
unknown

�

�
a0t1ρ1

0

�
(3)

1 For a grazing incidence angle θ at the surface, the coefficients ptj , rjq at Σj - see [3] - are given by tj �
2pj�1

pj�1�pj

and rj �
pj�1�pj
pj�1�pj

, with pj �
a
θ2 � 2δj � 2iβj
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with a � pa1, a2, . . . , aN�1q
T and b � pb0, b1, . . . , bN q

T . In the multidimensional case (right
hand side of (3)), D � diagrprjν

�1
j qs P CpN�1q�pN�1q is a diagonal matrix while HU ,HL P

CpN�1q�pN�1q are the so called Hessenberg matrices, upper and lower respectively. Also,
ρj P CN�1 is the jth canonical vector. A similar approach, not exactly in the same matrix
context, was also stablished in [2]. It should be noted that (3) gives us the following results:

"
HUa�Qb � a0t1ρ1

Da�HLb � 0
ñ

"
a � �D�1HLb�
Q�HUD

�1HL

�
b � a0t1ρ1

(4)
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Figure 3. From left to right: Plot of ta1pθq, a2pθq, b0pθq, b1pθqu in the complex plane, with 0 ¤ θ ¤ 1�.

To find the solution ta, bu, we first solve a linear system to find the vector of reflected
amplitudes b, followed by a matrix product to compute the transmitted amplitudes a, as given
in (4). It is easy to note that the matrix M � Q � HUD

�1HL is in the tridiagonal form.
Therefore, solving Mb � a0t1p1 requires about OpNq operations using a fast algorithm. This
is in contrast with the OpN3q operations requested by the complete Gaussian elimination, see
[8, 7]. Another non-optimal approach, involves computing the analytical inverse of matrix
L using the Aitken-block diagonalization (Banachiewicz inversion formula, see [9]). Such an
inversion, although explicit, involves at least three tridiagonal inversion; being expensive than
solving the system with matrix M. We remark that our strategy has the same computational
cost as the one depicted in [3, 5], where N two-dimensional linear systems must be solved to
find a and b.�� ��Example: In order to verify the matrix formalism in (4), we consider an example extracted

from [1]. Let us consider a 2-layered thin film, deposited on a thick Silicium substrate; first
layer being Cobalt and second Gold. Layers have thickness around h1 � 3.4 � 10�9nm and
h2 � 2 � 10�9nm respectively. Complex refractive indexes are given by nj � 1 � δj � iβj with
δ � p5.6�10�6, 10.5�10�6, 1.6�10�6q and β � p19.8�10�8, 129.5�10�8, 0.84�10�8q. Figure
3 shows the complex solution a � pa1, a2q P C2 and b � pb0, b1q P C2 of equation (4), for a
variety of glancing angles. The intensity function f0pz, θq � |e�ikzp0 � b0pθqe

ikzp0 |2 is shown in
figures 4 and 5 for fixed values of z and θ. We considered the initial amplitude a0 � 1. The
results obtained here are slightly different from [1] since we are not considering mixtures within
each layer. �

3. The inverse problem
As previously stated, we want to solve a fitting problem r♠s. Let the measurement data be given
by vector q P Rv. Functional u P RN ÞÑ rpuq P Rv (with v ¥ N) has to be minimized using
a standard optimization algorithm. Many differential techniques can be used in this problem
since r is a differentiable function of u. In fact,

rpuq � q � Fmpuq, Fmpuq � pFmpθs,uqq P Rv, Fmpθ,uq � cTmpuq`mpθ,uq (5)

with m standing for a given element under investigation. Here, cTm is the mth row of the matrix
C � pcmjq whereas `m is the mth column of a matrix L � p`jmq. To implement an optimization
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Figure 4. Intensity curve f0pz, �q at depth z P
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Figure 5. Intensity curve f0p�, θq at glancing
angles θ P t0.0012752, 0.0016107, 0.0026174u.

method, one must have the Jacobian of r, which is written as Jrpuq
T � r∇r1puq . . .∇rvpuqs

with rspuq � qs � Fmpθs,uq. The gradient ∇rs depends on the derivatives BlFmpθs,uq �
Blpcmq

T `m�cTmBlp`mq, with Bl denoting �
B
Bul

. Hence, to obtain BlFm, first we need alternatives

to obtain the partial derivatives of `m, and therefore, the derivatives of apθ,uq and bpθ,uq. This
is our new problem:

Problem r�s: Find Blapθ,uq P CN�1 and Blbpθ,uq P CN�1 for l � 1, . . . , v

Ommiting the angle dependence for simplicity, equation (4) give us a direct formula to
compute a and b through simple matrix product, where each matrix also depends on the
parameter u. We use this fact to obtain the derivatives. In fact, using α � a0t1 and
bpuq � αMpuq�1ρ1; and from trivial matrix calculus BlrM

�1s � �M�1pBlMqM�1:

pBlbq � �M�1pBlMqM�1pαρ1q ñ

"
MpBlbq � �pBlMqb (a)
Mb � αρ1 (b)

(6)

This means that Blb is obtained solving the tridiagonal linear system (6.a), while (6.b) was
previously solved. To find Blb we use (4) again. Indeed, from Da � HLb � 0 and matrix
calculus we obtain �DpBlaq � pBlDqa � pBlHLqb � HLpBlbq. It only remais to find matrices
tBlD, BlHL, BlHUu. After some observation, it is easy to realize from (3) that

HL � �diagptq �
Ņ

k�1

ρkρ
T
k�1

νk
, HU �

N�1̧

k�1

νkρkρ
T
k � tk�1ρk�1ρk, Q �

Ņ

k�1

rkνkρkρ
T
k�1, D �

Ņ

k�1

rk
νk

ρkρ
T
k (7)

where now follows immediately �BlM � pBlHU qD
�1HL�HUBlpD

�1qHL�HUD
�1BlpHLq with

BlHL � Bl

�
1

νl



ρlρ

T
l�1, BlHU � Blpνlqρlρ

T
l , BlQ � Blpνlqrlρlρ

T
l�1, BlD � Bl

�
rl
νl



. (8)

4. Future work
Our matrix formalism is new and very different from the one pointed out in [3, 5, 1]. A
fast computation of the amplitude coefficients a, b P RN�1 and their partial derivatives
Bla, Blb P RN�1 was presented. A complete algorithmic description, using standard differential
optimization techniques, depends on the calculation of these vectors.
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[3] Sánchez H J, Pérez C A, Pérez R D, Rubio M, 1996 Surface analysis by total-reflection x-ray fluorescence,

Radiat.Phys.Chem. 48, pp.325.
[4] Parrat L G, 1994 Surface studies of solids by total reflection of x-rays, Physical Review, 95(2), pp 359.
[5] Król A, Sher C J and Kao Y H, 1988 X-ray fluorescence of layered synthetic materials with interfacial roughness, Phyical

Review B, 38(13), 8579-92.
[6] Gerrard A and Burch J M, 1975, Introduction to Matrix Methods in Optics, Dover, John Wiley & Sons.
[7] Lewis J W, 1982 Inversion of tridiagonal matrices, Numerische Mathematik, 38(3), pp.333.
[8] Usmani R A, 1994 Inversion of jacobi’s tridiagonal matrix, Computer Math. Applic., 27(8), pp.59.
[9] Tian Y, Takane Y, 2009 The inverse of any two-by-two nonsingular partitioned matrix and three matrix inverse

completion problems, Computers & Mathematics with Applications, 57(8), pp. 12941304.

2nd International Conference on Mathematical Modeling in Physical Sciences 2013 IOP Publishing
Journal of Physics: Conference Series 490 (2014) 012149 doi:10.1088/1742-6596/490/1/012149

5


