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Abstract.  Within the field of systems biology, revealing the control systems functioning 
during embryogenesis is an important task. To clarify the mechanisms controlling sequential 
events, the relationships between various factors and the expression of specific genes should be 
determined. In this study, we applied a method based on Structural Equation Modeling (SEM), 
combined with factor analysis. SEM can include the latent variables within the constructed 
model and infer the relationships among the latent and observed variables, as a network model. 
We improved a method for the construction of initial models for the SEM calculation, and 
applied our approach to estimate the regulatory network for Antero-Posterior (AP) pattern 
formation in D. melanogaster embryogenesis. In this new approach, we combined cross-
correlation and partial correlation to summarize the temporal information and to extract the 
direct interactions from the gene expression profiles. In the inferred model, 18 transcription 
factor genes were regulated by not only the expression of other genes, but also the estimated 
factors. Since each factor regulated the same type of genes, these factors were considered to be 
involved in maternal effects or spatial morphogen distributions. The interpretation of the 
inferred network model allowed us to reveal the regulatory mechanism for the patterning along 
the head to tail axis in D. melanogaster. 

1.  Introduction  
Clarifying the process that generates an organism’s body plan is one of the fascinating themes, and the 
process of D. melanogaster embryo formation is a suitable model for studying embryogenesis. During 
D. melanogaster embryogenesis, anterior-posterior (AP) patterning is generated by serial 
transcriptional regulation, beginning with maternally supplied transcripts, through gap genes and pair-
rule genes, and finally segment polarity genes [1]. The expression of these genes generates gradients 
of their proteins in the embryo, and thus these gradients determine the expression of the following 
genes [2]. The regulation of developmental genes has been extensively studied, but many aspects 
remain unexplained and we are far from a complete understanding of pattern formation. 

To obtain better insights into the transcriptional regulatory mechanism for pattern formation, a gene 
regulatory network is useful [3, 4]. Since the underlying mechanism of transcriptional regulation is the 
localized expression of transcription factor genes at specific times and places, revealing the regulatory 
networks between these genes would provide a schema of developmental regulation in embryogenesis. 
Furthermore, the influences from several types of cellular components should be considered as 
regulatory factors of gene expression. Thus, we have developed a new approach, based on Structural 
Equation Modeling (SEM), to investigate the regulatory relationships between different cellular 
components [5, 6]. 
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 In this study, we developed a new method to assume an initial model for SEM calculation, and 
improved our SEM approach for inferring complicated transcriptional regulation in D. melanogaster 
embryogenesis. We applied our approach to 18 transcription factor genes with regulated expression for 
AP pattern formation. Using our methods, the regulatory factors for AP pattern formation were 
estimated by factor analysis, and the regulatory relationships from the regulators to the genes were 
estimated by SEM.  

2. Materials & Methods

2.1.  Expression data and selected genes 
For the construction of the initial model, we utilized the expression profiles of 12,868 genes measured 
during 28 time points, covering the entire 24-h period during D. melanogaster embryo development 
[7]. All expression data in D. melanogaster embryo cells were downloaded from GEO Database 
(http://www.ncbi.nlm.nih.gov/geo/). Among the empirically identified transcription factor genes for 
AP pattern formation [8], 18 genes displayed sufficient expression profiles, and these were utilized to 
infer the regulatory network.  

2.2.  Construction of the initial model  
To construct an initial model, we developed a new method that combines cross correlation and partial 
correlation. Causal relationships between genes were detected by cross correlation, given by 
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where xi and yi are two time series data with N time points, and d is the time-lag between variables x 
and y. In this case, each gene pair was calculated with d = -5, … , +5. The eleven absolute values of 
cross correlations were compared, and the highest absolute value was arranged in a fundamental cross 
correlation matrix. The corresponding time-lag value d was arranged as a matrix element in a discrete 
matrix.  

The direct interactions were estimated by the partial correlation coefficients calculated from the 
cross correlation matrix, as follows: 

2/12/1 )()( jjii

ij

restij rr
rr = (2) 

where rij|rest is the partial correlation coefficient between variables i and j, given the rest, and rij is the (i, 
j) element in the reverse of the cross correlation coefficient matrix. To detect the significant value of
the partial correlation coefficient, we use the statistic 
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where q is the number of fixed variables and n is the number of samples. The statistic tij is distributed 
according to the t distribution. Thus, the relationship between the expression profiles can be tested by 
the t-test. In this study, we selected the significant gene pairs at p< 0.01.  
 Finally, we combine partial correlation and cross correlation. The regulatory directions, which were 
estimated by the sign of the time-lag values, were added to the extracted gene pairs by PCC. The 
procedure developed for constructing the initial model is displayed in Figure 1.
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Figure 1. Procedure for initial model construction. 

2.3.  Factor Analysis  
To determine the optimal number of factors for inclusion in the network model as latent variables, we 
performed a factor analysis. In the factor analysis, the covariance matrix between the observed 
variables Σ is structurized by parameters, as follows:

[ ] 2Ψ+ΛΦΛ==Σ tXVar (4) 
where Ψ2 is the covariance matrix of error terms,  Λ is the factor loading matrix of latent variables, and
Φ is the covariance matrix among factors. From this structurized matrix, the values of the matrix and
the variances of the error terms are estimated. In this study, the Kaiser criterion states and the scree 
plot were utilized to estimate the number of factors. The number of latent variables was suggested by a 
principal factor method with promax rotation, which is a general method for rotating factors to fit a 
hypothesized structure of latent variables. 

2.4.  Structural Equation Modeling (SEM) 
In this study, the regulatory model is defined as follows: 
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Here, f is a vector of p latent variables, and v is a vector of q observed variables. The matrix Β is a p×p 
matrix representing the relationships between latent variables; Γ is a p×q matrix representing the 
causal relationships between observed and latent variables; Θ is a q×p matrix representing the 
effectiveness of latent variables to the observed variable; and Κ is a q×q matrix representing the 
regulatory relationships between observed variables. In the SEM analysis, the parameter estimation 
was performed by comparing the actual covariance matrix S, calculated from the measured data, with 
the estimated covariance matrix Σ(θ) of the constructed model. The maximum likelihood method was 
utilized as a fitting function to estimate the model parameters. To optimize the network model, we 
developed an iteration algorithm by using fitting scores and modification index (MI) scores, which 
measure how much the chi-square statistic is expected to decrease if a particular parameter setting is 
constrained. The SEM software package SPSS AMOS 17.0 (IBM, USA) was used.  

3. Results & Discussion
By our combination of cross correlation and partial correlation, we estimated 35 causal relationships 
between 18 genes. Furthermore, the application of factor analysis provided information about 
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unobserved effective factors, and 4 factors were estimated as regulators for the 18 genes. Thus, the 
optimal model was inferred from an initial model with the 18 genes and the detected factors. The 
whole network is displayed in Figure 2a. In Figure 2b, the order of the 18 genes is consistent with the 
biological knowledge of them, even though the order was disturbed in the initial model. The inclusion 
of latent variables into an inferred model is considered to be suitable for representing a biological 
phenomenon. Furthermore, Figure 2c shows that the known temporal and spatial gene expressions 
during D. melanogaster development are well reflected by the inferred networks between genes. 

Figure 2. Inferred networks. (a) Whole network model. (b) Relationships between factors and 
genes. (c) Relationships between genes. Orange: Maternal, Pink; Gap, Green: Pair-rule, Blue; 
Segment, Yellow; Signal. 

Since F2 was a positive regulator of all maternal genes and some gap genes, F2 was considered as 
Bicoid protein density in the early embryo. Furthermore, F3 regulated many gap genes positively, but 
negatively regulated one pair-rule gene, therefore F3 was considered to be an inducer of the gap 
genes’ process by repressing pair-rule gene expression.  

4. Conclusion
In this study, the spatial and temporal controls that function in the developmental process were 
identified by our inferred network. In the inferred network, not only the effects of transcription factor 
proteins, but also the protein densities were suggested as latent variables. The network inference by 
SEM is applicable to clarify the control of gene expression by intracellular factors. 
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