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Abstract. Hyperthermia has been widely used in cancer treatment to destroy tumors. The
main idea of the hyperthermia is to heat a specific region like a tumor so that above a
threshold temperature the tumor cells are destroyed. This can be accomplished by many
heat supply techniques and the use of magnetic nanoparticles that generate heat when an
alternating magnetic field is applied has emerged as a promise technique. In the present paper,
the Pennes bioheat transfer equation is adopted to model the thermal tumor ablation in the
context of magnetic nanoparticles. Numerical simulations are carried out considering different
injection sites for the nanoparticles in an attempt to achieve better hyperthermia conditions.
Explicit finite difference method is employed to solve the equations. However, a large amount of
computation is required for this purpose. Therefore, this work also presents an initial attempt
to improve performance using OpenMP, a parallel programming API. Experimental results were
quite encouraging: speedups around 35 were obtained on a 64-core machine.

1. Introduction

The tissue temperature variation caused by the magnetic nanoparticle hyperthermia process
can be mathematically modeled by means of the Pennes equation [1]. Although there are other
mathematical bioheat transfer models, the Pennes one is the most widely adopted in modeling
due to its simplicity and good approximation [2]. Normally, heat generation in hyperthermia
process is given by a quantity namely specific absorption rate (SAR) that are added to the
bioheat equation as a source term. The SAR distribution and its parameters in the context of
magnetic nanoparticles were determined by a previous study of temperature elevations in a rat
hind limb [3].

The objective of the current study is to analyze different ways of employing injection sites
inside the tumor. The tissue temperature in the hyperthermia process is written as a function of
a steady-state temperature since before the heating the tumor tissue is at a higher temperature
than the normal tissue. Furthermore, due to the large amount of floating point operations
required to implement the numerical method, the current work also presents the speedup
achieved by the parallel version of the code, developed using OpenMP[4].

2. Bioheat transfer model
The transient bioheat model used is the well-known Pennes equation given by [1]:
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where p, ¢ and k are, respectively, the density, the specific heat and thermal conductivity of the
tissue; ¢p, pp and wyp are, respectively, the specific heat of the blood, the density of the blood
and blood perfusion rate; @Q,, metabolic heat generation; T, is the arterial blood temperature
and 77 the tissue temperature; (), external spatial heating.

The initial temperature, called T»(Z), over the whole tissue with a tumor can be calculated
from the steady-state bioheat equation considering ), = 0, that are obtained taking % = 0.

Once the tissue temperature T5(Z) is known, one can proceed with the solution of equation
1. However, to simplify the analysis of the model we use a transient equation that represents

the relative temperature T(Z,t) = Ty (%, t) — To(Z) [5]. Hence, we obtain:
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3. Numerical scheme

The numerical method applied to solve equation 2 is the finite difference method [6]. In this
way, a uniform Grid over the closed domain QJI" C R? with coordinates x; = ih, and y; = j hy
is constructed with h, and h, being the grid spacing in each direction. The discretization used
in the time domain is the forward difference with a time step size h; such that ¢, = nh; while
the second order central difference is employed for the spatial discratization. Hence, the discrete
counterpart of equation 2 reads:
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where Uly1jo; = _ki+1/2j07x,] ~ =kl J% (all the other fluxes are approximated in a
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similar manner). When thermal conductivity is a smooth function, the values of k;;/ ; can be
computed directly at that point. However, if k(%) is discontinuous as in the case of piecewise

homogeneous media (e.g. tissue with tumor), the harmonic mean of the thermal conductivity
2ki jkit1,5

Ty ey 18 adopted to ensure the flux continuity.

expressed by k?iil/Z,j =

4. Numerical simulations and parallelization strategy
All simulations performed in this study consider that above T = 43°C' the cell is destroyed
causing necrosis [7]. Actually, the temperature is computed in terms of T'(Z,t) = Ty (Z,t) — T2(Z)
with T5(Z) being slightly higher than 37°C due to the tumor.

In hyperthermia treatment the heat generation from the applied injection sites can be
described by the so-called SAR. According to Salloum et. al [3] the SAR around the injection
site due to magnetic nanoparticles can be approximated by a Gaussian distribution expressed
by SAR = A.e /"8 where A represents the maximum value; r is the spatial distance from
the injection site; and rg is how far from the injection site the heating affects the tissue.
The external spatial heating @, accounts for the n injection sites which is represented by

Qr(7,t) =3 Ai.e_r(f)?/T(Q),i
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In the model analyzed here, we consider a square domain with length 0.1m and a square tumor
with length 0.02m located at the center of the domain. The thermal conductivity considered
for normal tissue and tumor are k = 0.5W/m°C and k = 0.55W/m°C, respectively; the blood
density p, = 1000.0K g/m?; the blood specific heat ¢;, = 4200.0.J/ K g°C'; the blood perfusion rate
for normal tissue and tumor are, respectively, wp = 5.107%s71 and w, = 1.25.103s~!. This study
was divided into 2 cases, the first assumes a single injection site and the second one 4 injection
sites. At both cases we consider a hyperthermia with 50 min of duration. In the first case the
Gaussian distribution SAR parameters are assumed to be 4 = 1.3.10°W and ro = 3.1.1073m][7]
while in the second case A = 0.325.10W and ro = 3.1.10~3m for each injection site, in other
words, each injection site has a quarter power of the first case.

Figure 1 depicts the temperature distribution in both cases, and Figure 2 the temperature
time histories at two distinct points, one located in the health tissue at (x = 0.030,y = 0.050)
and another one inside the tumor at (z = 0.045,y = 0.050).
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Figure 1. Temperature contour plot at ¢ = 50min: (a) one injection site; and (b) four injection
sites
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Figure 2. Temperature time-histories inside and outside the tumor in both cases

It is worth mentioning the effectiveness of the tumor necrosis at both cases. However, in the
former we get 78.75% of tumor necrosis and 0.125% of health tissue necrosis, while in the latter
we get 91.75% of tumor necrosis and 0.260% of health tissue necrosis. The point is that with
four injection sites more tumor cells are affected compared to one injection site which means
that the temperature is more distributed at the latter case.

However, this sequential version of the code takes almost 10 hours to execute a simulation.
In order to reduce this huge execution time, a parallel version of the code was implemented
using OpenMP[4]. Due to dependencies among distinct time-steps, only the computation of the
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spatial discretization was implemented in parallel. Supposing that the domain is discretized into
N, x Ny grid points, each thread is responsible for processing (N, x N,)/n points, where n is the
number of threads. Although the loop that implements the spatial computation is nested into
the temporal loop, threads are created only once, before the temporal loop, and then associated
statically with the spatial data it must compute, so thread creation overhead is paid only once.

Our experiments were performed on a SMP Linux (3.9.2-200) computer, consisting of 4
AMD Opteron 6272 CPU and 128 GB of RAM. Each CPU has 16 cores, so a total of 64 cores
are available. It is worthwhile to note that in this CPU two cores share a single FPU. This
architectural characteristic hurts performance. In particular, depending on the way threads are
scheduled, two distinct threads can dispute the same FPU, even when the number of threads are
below to the total number of FPUs available. The speedup presented in Figure 3 were obtained
using the average value from three executions whose standard deviation was below to 0.4957.
As one can observe, the results are quite encouraging: speedups up to 35 were achieved, which
means that the execution time drops from 10 hours to about 16 minutes.
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Figure 3. Speedups on a 64-core computer

Conclusions

A numerical simulation of tumor cells necrosis using hyperthermia by applying magnetic
nanoparticles has been presented. It has been observed that the number of injection sites and
their locations inside the tumor play an important role to achieve the desired temperature
distribution (recall that hyperthermia normally involves heating tissue above T = 43°C).
Moreover, speedups up to 35 were achieved. As a future work, we plan to handle more complex
models in 3D using for this purpose GPUs[S].
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