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Abstract. The role of Magnetic Resonance Imaging (MRI) as an alternative protocol for 
screening of breast cancer has been intensively investigated during the past decade. 
Preliminary research results have indicated that gadolinium-agent administrative MRI scans 
may reveal the nature of breast lesions by analyzing the contrast-agent’s uptake time. In this 
study, we attempt to deduce the same conclusion, however, from a different perspective by 
investigating, using image processing, the vascular network of the breast at two different time 
intervals following the administration of gadolinium. Twenty cases obtained from a 3.0-T MRI 
system (SIGNA HDx; GE Healthcare) were included in the study. A new modification of the 
Seeded Region Growing (SRG) algorithm was used to segment vessels from surrounding 
background. Delineated vessels were investigated by means of their topology, morphology and 
texture. Results have shown that it is possible to estimate the nature of the lesions with 
approximately 94.4% accuracy, thus, it may be claimed that the breast vascular network does 
encodes useful, patterned, information, which can be used for characterizing breast lesions. 

1. Introduction
In the presence of abnormal growth, the need for oxygen and nutrients rapidly increases. Mechanisms 
for stimulating vascular growth are activated and new vessels are generated to support the increased 
metabolic demands of the tumour. This effect is captured by proper MRI scan protocols, such as T1-
weighted scans, and, thus, diagnostic assessments are feasible [1-4]. These assessments are made on 
the basis of the so-called Time Intensity Curves (TIC) or Kuhl Curves [5, 6], which are divided into 
three categories: a/ type I characterized by a continuous increase in the measured signal (contrast-
agents uptake) over time; these curves are indicative of benign cases, b/ type II characterized by signal 
increment upon a plateau value, raising concerns that malignant formations might be present, and c/ 
type III characterized by a rapid signal increase following by a rapid decrease, which has been shown 
as typical pattern in the presence of malignancy. Although angiogenesis is an important diagnostic 
lead strongly correlating with malignancy, it is also appears in non-malignant cases, such as benign 
lesions, inflammations etc. The latter complicates assessments. Extensive clinical reviews have shown 
a great sensitivity (around 90%) of the method with controversial specificity (from 37% to 100%) [7] 
that increases the overall cost of the exam and distress of the patients, since biopsies are obtained 
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needlessly. The latter has initiated a number of studies aiming in standardizing the procedures and 
protocols for breast MRI scans assessments. Yabuuchi et al [8] have proposed a method that combines 
DCE and DWI (Diffusion Weighted Imaging) leading to increased sensitivity, specificity, positive 
predictive value, negative predictive value, and accuracy. Sivarajan et al [9] have concluded that the 
introduction of morphologic and perfusion parameters in the interpretation of breast DCE-MRI 
improves both sensitivity and specificity. Macura et al [10] concluded that intensity enhancement 
measured in various time intervals after the contrast agent administration (thus, the TICs) is the most 
crucial. In this study, we attempt to investigate whether the quantification of the vascular network of 
the breast might lead to the same diagnostic conclusions as the investigation of the TICs. For this 
reason, a structured sequence of image processing step was developed with basis a modified Seeded 
Region Growing (SRG) algorithm in order to effectively delineate blood vessels. 

2. Material and Methods

2.1. Material 
Clinical material comprised 20 breast MRI images from 20 female patients, 18 with confirmed cancer. 
The MRI examinations were carried out on a 3T system (Signa, GE Healthcare) and the array spatial 
sensitivity encoding technique (ASSET) or parallel imaging technique was used. Two MIP (maximum 
intensity projection) images were obtained from each patient, one 1.5 minute after the administration 
of the contrast agent (pre-contrast) and one after 1.5-3 min (post-contrast). The contrast agent 
administration consisted of injection of 0.1 mmol/kg of gadopenate dimeglumine (Omniscan, 
Magnevist, Multihance) followed by a 10-mL saline solution flush, over a period of 5-8 sec. Detailed 
information regarding the data and protocols used can be found in [11]. 

2.2. Methods 
The methodology consisted of a structured sequence of image processing algorithms: 

Step 1: Background removal by subtracting from the original image a morphological opened image 
using a 7x7 disk component to remove structures that had similar grey level values with vessels (i.e. 
dense breast regions and masses) [12]. Step 2: Median filtering (3x3) to reduce noise [13]. Step 3: 
Otsu’s thresholding [14] for an initial estimation of seed points used by subsequent step of the SRG 
algorithm. Step 4: Application of the SRG algorithm, which was constructed using a hysteresis 
criterion (see section 2.2.1), for the finalization of the segmentation (white pixels in the binary image 
represented vessel regions). Step 5: Based on the segmented image, the total area of vessels was 
calculated as the sum of white pixels for both the pre- and post contrast image of each patient. By 
dividing this area with the total number of pixels of the breast (Whole Breast Area - WBA) the 
percentage of vessels within the breast (Vascular Coverage - VC) was computed: 
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WBA was calculated as the sum of all segmented pixels found after applying thresholding to the 
morphologically processed image (using a 7x7 opening filter). Step 6: The ratio of VC of the pre- and 
the post-contrast image was computed as an index of the Vascular Growth (VG). Values of VG<1 
meant that the vascular coverage appeared increased in the post-contrast image.  
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2.2.1. Seeded Region Growing (SRG) 
The SRG algorithm aims in partitioning the image into meaningful regions on the basis of a set of 

initial predefined points, the so called seeds. The seeds can be manually set or automatically labelled. 
Given the seeds, the algorithm searches the seeds’ immediate (connected) neighbours to find those 
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sharing some common similarity. The seeds are also referred to as allocated pixels, whereas the rest of 
the pixels as non-allocated. Considering a set of initial seeds S1, S2, S3, …, Sn, n is the number of total 
seeds, then non-allocated pixels found in the immediate vicinity of S are [15]: 
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where N(x) is the set of non-allocated immediate neighbours of pixel x. Usually the immediate 
neighbourhood is considered rectangular with 8 neighbour-pixels surrounding x, which is found at the 
center of this region. To estimate whether the neighbours will be allocated to the ‘seed-class’, a 
similarity criterion should be defined. The simplest criterion δ(x) is 
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where g(x) is the grey value of pixel x. When this criterion is minimized then pixel x is classified as 
a seed-class pixel. In this study a modified version of the SRG algorithm was developed and applied. 
The modified version uses a different criterion for investigating the immediate neighbourhood of the 
seed-class pixels. The proposed criterion separates the immediate neighbourhood into strong pixels 
belonging to the seed region (Region 1), strong pixels belonging to the background region (Region 2) 
and weak pixels, which are the non-allocated candidate pixels (Region 3), according to: 
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3. Results and Discussion
Figure 1 illustrates an example of the application of the proposed structured sequence of image 
processing steps to a post-contrast image of a female patient with breast cancer at the center of the 
right breast with type III TIC curve. Figure 1(a) is the original image. Figure 1(b) is the background 
removed median filtered image, where it is clearly visible that the intensity and grey level distribution 
of pixels belonging to the mass at the center of the right breast are greatly weakened. In this way, 
vessel segmentation is facilitated. Non-informative texture other than vessels was smoothed, since this 
kind of texture did not constitute useful information. Figure 1(c) depicts the result of an Otsu-based 
thresholding, which was used as a gross estimation of the initial seeds for the subsequent SRG. This 
segmentation result was incomplete since many vessels were lost. The result was greatly enhanced 
(Fig 1(d)) following the application of the modified SRG. More vessels were detected as compared 
with thresholding, and corrupted vessels were completed. However, there were still vessel regions 
undetected. The latter did not significantly affect the computation of vascularity, since it is a 
reasonable to assume that the magnitude of under-segmentation was approximately the same in both 
the pre- and post-contrast images. Thus, the ratio of VC of the pre- and post-contrast images 
eliminated this under-segmentation error. Figure 1(e) illustrates the superposition of the segmented 
vessel pixels to the original image (Fig 1(a)), clearly indicating a segmentation underestimation. It is 
logical to assume that this underestimation in the first and second time interval image is the same, 
thus, the computation of the VG factor is not biased. Figure 1(f), which is a scatter diagram of the VG 
factor for each case included in the study, illustrates the Vascular Growth factor for all 18 cancer cases 
tested. For all cases with breast cancer except one (for the 94.4% of the cases), the vascular network 
appeared more prominent in the post-contrast image (VG<<1) confirming that abnormal formations do 
require an increase metabolic, and, thus, blood circulation coverage. Moreover, this increment of 
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vascularity was found as high as 60% for the more advanced malignancies. Only one case was found 
as of no change (VG≈1). In the two control images (normal cases), no change of the appearing 
vascular network was computed (VG≈1) between the pre- and post-contrast images. Thus, results 
indicate that it is possible to estimate the presence of cancer in breast MRI images by estimating the 
extent and the area of the vascular network.   

(a)  (b)  (c) 

(d) (e)  (f) 

Figure 1. (a) Original Image, (b) Background Corrected Image, (c) Median Filtered Image, (d) Threshold 
Image, (e) Final SRG Segmented Image, (f) Vascular Growth 

The sensitivity of the proposed method (94.4%) is in line with results presented in literature [7] 
(around 90%), although the proposed methodology investigates the problem from a different point of 
view focusing on the vascular network of the breast, rather than investigating the TOC curves [7]. 
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