
Competing computational approaches to

reaction-diffusion equations in clusters of cells

Sabrina Stella1, Roberto Chignola 2 and Edoardo Milotti1,3

1Department of Physics, University of Trieste, Italy
2Department of Biotechnology, University of Verona, Italy
3Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italy

E-mail: sabrina.stella@ts.infn.it

Abstract. We have developed a numerical model that simulates the growth of small avascular
solid tumors. At its core lies a set of partial differential equations that describe diffusion
processes as well as transport and reaction mechanisms of a selected number of nutrients.
Although the model relies on a restricted subset of molecular pathways, it compares well with
experiments, and its emergent properties have recently led us to uncover a metabolic scaling law
that stresses the common mechanisms that drive tumor growth. Now we plan to expand the
biochemical model at the basis of the simulator to extend its reach. However, the introduction
of additional molecular pathways requires an extensive revision of the reaction-diffusion part of
the C++ code to make it more modular and to boost performance. To this end, we developed
a novel computational abstract model where the individual molecular species represent the
basic computational building blocks. Using a simple two-dimensional toy model to benchmark
the new code, we find that the new implementation produces a more modular code without
affecting performance. Preliminary results also show that a factor 2 speedup can be achieved
with OpenMP multithreading, and other very preliminary results indicate that at least an
order-of-magnitude speedup can be obtained using an NVidia Fermi GPU with CUDA code.

1. Introduction
Biophysical models of cancer are widely believed to be important tools in the understanding of
the disease, and currently there are two main – and often competing – approaches: analytical
models [1], and numerical models [2, 3]. We think that both approaches are useful and important,
and we have recently given an overview of a synergetic approach that combines both methods
[4]. While the difficulties of the analytical methods are well understood, the actual feasibility
of computational modeling depends on a plethora of details, and here we discuss an interesting
numerical implementation of the reaction-diffusion part of our program for the simulation of the
growth of small avascular solid tumors [5]. The program includes the definition of single cells
with their phenotype, and of their metabolic activity, growth, and proliferation. The simulations
produce 3-D lattice free cell aggregates with nearly spherical shape which can eventually contain
more than one million cells [6]. The diffusion and the interaction of a limited, but accurately
chosen set of molecular species, within cells and the environment is described by a system of
partial differential equation, and the numerical integration of this system is one of the important
aspect of the simulation process. The diffusion problem is naturally discretized over the network
of cells’ centers. In this context it is natural to implement an object-oriented code where single

2nd International Conference on Mathematical Modeling in Physical Sciences 2013 IOP Publishing
Journal of Physics: Conference Series 490 (2014) 012129 doi:10.1088/1742-6596/490/1/012129

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



cells are the basic computational objects, and the masses of metabolites inside cells are object
data. Here we describe a new abstract model with a reversed logic, where the molecular species
are the basic objects while cells are a mere spatial scaffolding; this approach makes the code
more reliable, thanks to a better encapsulation, and more easily expandable.

2. Material and Methods
We explain the inner workings of the new code with the aid of the 2-dimensional toy model which
is illustrated in fig.1. It consists of a grid of cells (represented by circles) in which the diffusion

La#ce&size&Δ&=&cell&diameter&

A&

B&

A&

A&

A&B&

B&

B&

@⇢(B)

@t
= DBr2⇢(B) � V

(B)
max⇢(B)⇢(A)

K(B) + ⇢(B)⇢(A)

@⇢(A)

@t
= DAr2⇢(A) � V

(A)
max⇢(A)

K(A) + ⇢(A)

Figure 1. Geometry of the toy
model. Cells are arranged in
a square two-dimensional lattice.
Two different chemical species dif-
fuse throughout the cell aggregate,
and the initial concentration values
are set to 1 (arbitrary units) along
the edge of the lattice and vanish in
the remaining cells.

of two different molecular species, A and B, takes place. The initial concentration values are set
to 1 (arbitrary unit) along the edge and remain constant over the time, whereas the inner cells
has a vanishing concentration value. The molecular species can diffuse throughout the lattice
and, at the same time, they take part to reaction processes; the evolution of their concentrations
in the lattice can be described by second order partial differential equations

∂ρ(k)(x, y, t)

∂t
= D(k)∇2ρ(k)(x, y, t)− f (k)[ρ(x, y, t)] (1)

where the two terms on the r.h.s. are respectively the diffusion and the reaction terms, and
ρ = (ρ(A), ρ(B)) is the vector of the concentrations of two interacting chemicals. The parameters
D(k) (k = A,B) are the diffusion constants, whereas the functions f (k) corresponds to a single
and double substrate Michaelis-Menten terms respectively for the molecular species A and B
as illustrated in fig.1. The equations are solved numerically by discretizing the spatial domain
with a step size equal to the diameter of the cells; a N ×N sets of ordinary differential equation
is obtained, where N is the lattice size. A stable solution can be obtained using the implicit
Euler method [5] which then yields a system of coupled nonlinear equations. These equations are
then solved with the Newton-Raphson method; the iterations are stopped when a predetermined
accuracy value is finally achieved over the whole lattice.

3. C++ implementation and test runs
The new abstract model has been implemented using two classes that we call System and
Chemical. The class System stores information about the environment, in this case the square
lattice, and it manages the collective diffusion of all the initially defined molecular species.
The class Chemical represents a single diffusing molecular species and it stores its spatial
concentration map in a single STL vector where the n-th component corresponds to the n-th cell.
Chemical manages the time evolution of the concentration using the method Interact() that
calculates the concentration of the molecular species in the whole lattice at time t+∆t from the

2nd International Conference on Mathematical Modeling in Physical Sciences 2013 IOP Publishing
Journal of Physics: Conference Series 490 (2014) 012129 doi:10.1088/1742-6596/490/1/012129

2



value known at time t. Interact() is specific to each different molecular species, and we use the
constructor to define a pointer to external functions that will be successively dereferenced in the
body of Interact(). In particular two external functions are used to determine the numerical
integration method (which might eventually be different from the straightforward implicit Euler
method) and to identify the specific metabolic function. Using these classes the toy model is
implemented according to the following pseudocode:

1 create the environment where diffusion takes place: define lattice size, lattice spacing, and
time steps;

2 define the biochemical system: create Chemical objects representing the molecular species A
and B;

3 iterate the diffusion steps by calling the System::CollectiveDiffusion() method.

Figure 2 shows a concentration map for the molecular species A (roughly corresponding to
glucose), obtained with the toy model, with a 100 × 100 lattice, with lattice spacing (i.e., cell
diameter) 5 µm, and with the parameters specified in the cell legend.

A

Figure 2. Concentration map of the molecular
species A for simulated time of 3600 s, D =
7 · 10−6cm2s−1, Vmax = 1.2 · 10−4g cm−3s−1; K =
0.27 · 10−3g cm−3. The general shape follows the
expected behavior.

Both to check the correctness of the results and to compare the respective performances and
structural properties, we implemented the toy model also with a conventional scheme in which
the cells are the basic objects (hereafter we call this the cell-based model). In the cell-based
model the concentration values of A and B are data of the Cell class, and the corresponding
parameters are data of an additional class CellType that represents the cell’s phenotype. Finally
a CellSystem class is the equivalent of System in previous abstract scheme. The chemical-based
approach (that is the previously describe one) has a strikingly better encapsulation, since the
introduction of a new molecular species does not require any change in the already defined classes
but only the introduction of a new metabolic function in a header file. No other additional code
is required. On the contrary, in the cell-based model the introduction of a new molecular species
requires the modification of the whole set of classes.Table 1 shows that the new scheme does not
decrease the performance either. Another set of runs with variable lattice size shows that for
both abstract models the total execution time T has a faster-than-linear growth with respect
to the total number of lattice sites N , T ≈ 2.15 · 10−5N + 2.16 · 10−7N1.5, where the N1.5 term
is due to the global convergence condition in the Newton algorithm, since the number of loops
required to reach convergence is proportional to the number of lattice sites and to the linear
lattice size, i.e., to N ×

√
N = N1.5. These considerations show that the total execution time is

dominated by the numerical solution algorithm, and not by memory transfers (more efficient in
the chemical-based version).

2nd International Conference on Mathematical Modeling in Physical Sciences 2013 IOP Publishing
Journal of Physics: Conference Series 490 (2014) 012129 doi:10.1088/1742-6596/490/1/012129

3



Table 1. Execution times [s] of the diffusion process using the cell-based and chemical-based
method, for different simulated diffusion times in a 100× 100 lattice. The simulations were run
on a quad core MacBook Pro using the compilers Intel C++ XE 13.0 and GCC 4.7.

Intel XE 13.0 GCC 4.7 GCC 4.7 (opt -O )
Diff.time (s) Cell-b Chem-b Cell-b Chem-b Cell-b Chem-b
3600 0.43 0.47 1.25 1.24 0.44 0.46
5400 0.55 0.58 1.56 1.56 0.56 0.58
7200 0.67 0.70 1.90 1.91 0.67 0.70
9000 0.78 0.83 2.25 2.25 0.78 0.82

4. Code parallelization
The new code has high intrinsic parallelism: using straightforward OpenMP preprocessor
directives we obtain a speed-up of about 1.95x in a simulation with 4 different molecular species
on a 100x100 lattice, however, this can be pushed much further using a GPU, and the code
was slightly modified to exploit the power of a Quadro 4000 NVidia GPU. In this preliminary
implementation that does not use any optimization procedure, such as exploiting texture or
shared memory [7] we obtain a speedup of about 5x for a lattice size of 1000 × 1000 and total
simulation time equal to 3600 s. A comparison of the execution times for the diffusion-reaction
processes implemented on CPU and GPU is shown in table 2.

Table 2. Execution times [s] of the diffusion-reaction process implemented on GPU and CPU
with or without optimization flag for different lattice size and simulation time = 3600s.

Lattice size GPU CPU (no opt) speed-up CPU (-O3) speed-up
96× 96 0.73 1.2 1.6 0.46 <1
296× 296 3.04 20.8 6.8 7.8 2.6
600× 600 13.53 144.8 10.6 55.2 4.8
1000× 1000 46.02 624.8 13.5 239.5 5.2

5. Conclusions
The new computational scheme shall be used in the numerical simulator of tumor spheroids.
It is more easier extendible, allowing for an easier introduction of new chemicals, and more
robust, providing a better encapsulation of the code, without loss in terms of performance.
Moreover, the code running on GPU can be further optimized exploiting its hierarchical memory,
to significantly increase the execution speed.

References
[1] Araujo R and McElwain D 2004 Bulletin of mathematical biology 66 1039–1091
[2] Chignola R, FABBRO A D, Farina M and Milotti E 2011 Journal of Bioinformatics and Computational

Biology 9 559–577
[3] Chignola R and Milotti E 2012 AIP Advances 2 011204–011204
[4] Milotti E, Vyshemirsky V, Sega M, Stella S, Dogo F and Chignola R 2013 IEEE/ACM TCBB
[5] Milotti E, Del Fabbro A and Chignola R 2009 Computer Physics Communications 180 2166–2174
[6] Milotti E and Chignola R 2010 PLoS One 5 e13942
[7] Jr F M, Izsákb F, Mészárosc R and Lagzic I 2011 Chemometrics and Intelligent Laboratory Systems 108 76

– 85

2nd International Conference on Mathematical Modeling in Physical Sciences 2013 IOP Publishing
Journal of Physics: Conference Series 490 (2014) 012129 doi:10.1088/1742-6596/490/1/012129

4


