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Abstract. PET imaging is an important nuclear medicine modality that measures in
vivo distribution of imaging agents labeled with positron-emitting radionuclides. Image
reconstruction is an essential component in tomographic medical imaging. In this study, we
present the mathematical formulation and an improved numerical implementation of an analytic,
2D, reconstruction method called SRT, Spline Reconstruction Technique. This technique is
based on the numerical evaluation of the Hilbert transform of the sinogram via an approximation
in terms of ‘custom made’ cubic splines. It also imposes sinogram thresholding which restricts
reconstruction only within object pixels. Furthermore, by utilizing certain symmetries it
achieves a reconstruction time similar to that of FBP. We have implemented SRT in the software
library called STIR and have evaluated this method using simulated PET data. We present
reconstructed images from several phantoms. Sinograms have been generated at various Poison
noise levels and 20 realizations of noise have been created at each level. In addition to visual
comparisons of the reconstructed images, the contrast has been determined as a function of
noise level. Further analysis includes the creation of line profiles when necessary, to determine
resolution. Numerical simulations suggest that the SRT algorithm produces fast and accurate
reconstructions at realistic noise levels. The contrast is over 95% in all phantoms examined and
is independent of noise level.

1. Introduction
In classical tomography, one needs to reconstruct a two-dimensional (2D) function f(z1,x2)
from the following projections:
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f(p,&):/ f(rcost — psinh, 7sinf + pcosh)dr, —co<p<oo, 0<0<2m, (1)
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where p = x9cosf — x1sinf and 7 = xosinf + z1 cos§. The above line integral is known as the

2D Radon transform. Its inversion was first constructed by Radon [1], and it is equivalent to

the filtered backprojection (FBP) reconstruction formula [2, 3, 4].

Filtered backprojection (FBP) is the predominant analytic reconstruction method today. The
main advantages of FBP are speed and simplicity. FBP assumes a simple Radon model where the
data consist of line integrals along the radioactivity distribution, ignoring the randomness of the
gamma-ray counting process. Therefore, in FBP it is difficult to incorporate complex physical
phenomena such as attenuation and scatter. Noise issues are treated by selecting appropriate
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filtering parameters, such as the roll-off and cutoff frequencies of the reconstruction filter (usually
at the expense of spatial resolution). Another disadvantage of FBP is the streak artifacts that
are particular prominent near hot regions of the object.

In this study, we present an improved numerical implementation of an analytic, two-
dimensional, reconstruction method called SRT (Spline Reconstruction Technique), which was
presented earlier in the literature [5, 6]. This technique involves the numerical evaluation of the
Hilbert transform of the sinogram via an approximation in terms of cubic splines. In this new
version we have corrected singularity issues and optimized reconstruction time by employing
mathematical symmetries and imposing sinogram thresholding to restrict reconstruction within
object pixels. We have implemented SRT in the Open Source software library called STIR
(Software for Tomographic Image Reconstruction), and have evaluated this method using
simulated data from a clinical PET system.

2. Materials and methods

2.1. Spline Reconstruction Technique (SRT)

Associated with Eq. (1) there exists the following inverse problem: Given f(p,#) for all
0 <60 <27 and —o0 < p < 00, determine the corresponding function f(z1,z2). The relevant
formula, called the Inverse Radon transform, can be expressed in the following form [9]:

~
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where F' (p, 6) denotes half the Hilbert transform of f(p, ) with respect to p, i.e.
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and § denotes the principal value integral.
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For the numerical calculation of the Hilbert transform of f(p, ) we assume that f(p, ) has

support in the interval —1 < p < 1 with f(—1,8) = f(1,6) = 0, and that f(p,0) is given for

every 6 at the n points {p;}}. In the interval p; < p < p;11, we approximate f(p,6) by cubic
splines:

Fp,0) = ai(0) + bi(0)p + ci(0)p” + di(0)p®, pi<p<pip1, 0<O<2m, i=1,...,n, (4)
where {a;(0),b;(0),c;(0),d;(0)}] are constants given in terms of fis fir1, 17, fi’jrl, pi and p;y1.
Note that f; denotes the value of f at p;, and f;’ denotes the value of the second derivative of

f(p,0) with respect to p evaluated at p;. By substituting Eq. (4) in Eq. (3) we can derive the
following expression for the partial derivative of F'(p,6) with respect to p:

aF(p,@) . 1 1 o _ _ —
n—2
> [Di(p,0) — Dit1(p,6)]In|p — pz‘+1|} ) (5)
=1

where =1 < p<1and 0<6 <2n. C(0) and {D;(p,0)}| are defined as follows:

n—1
3
CO) = Y [2¢(0)A; + §di(9)(ﬂz2+1 — ), Ai=pis1— pi (6a)
=1
Di(p,0) = bi(0) +2¢:i(0)p+3di(0)p*, pi<p<pir1, i=1,....n (60)
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The quantities { 77 (0)}7; can be computed in terms of f;(f) by solving the following n linear
equations:

Di(pi+1,0) = Dit1(piv1,0), i=1,...,n—-2, 0<6<2m, (7a)

Di(p1,0) = Dn-1(pn,0) =0. (70)

We note that the points {pi+1}?;11 are removable logarithmic singularities. This is a direct
consequence of Egs. (7a).

Therefore, the Inverse Radon transform of a function f(p,#), using our splines approach, can
be written as:

27
foras) = = [ {00)+ 57 = Bp+ Dacs(p.0)1nlp = pul = Dilpu8) Il — | +
n—2
> [Di(p,0) = Dis1(p,0)]In|p — Pz‘+1|} do, (8)
=1

where C'(0) and D;(p,0) are given by Eqs. (6a) and (6b), respectively.

We note that in the construction of the so-called ‘natural” splines, one requires continuity of
the first derivatives (the set of equations in Eq. (7a)), as well as the conditions f; = f;/ = 0.
The former requirement implies that there cannot be logarithmic singularities at the interior
points p = p;, i =2,...,n— 1. In order to eliminate the logarithmic singularities at the end
points p; = —1 and p, = 1, we impose the set of equations in (7b) (instead of f{ = f// =0). In
this way we construct a set of splines ‘custom made’ for the evaluation of the Hilbert transform.

In order to numerically evaluate Eq. (8) for f(xi,z2) from the given sinogram f(p, ) and
the known detector locations p and projection angles 6, we first evaluate the second derivatives
of the sinogram f”(p;,6) by solving the system of linear equations in Eqgs. (7a) and (7b). Then,
we calculate the term C(#) for all §’s and p;’s. Finally, for any z1, z2, we compute p for every
0, and then f(z1,z2) using Eq. (8).

The reconstruction time of this algorithm can be reduced by employing object specific
information that is ‘hidden’ in the sinogram. In this respect we consider the important case
that the boundary of the object is convex. In this case, a pixel which is outside the boundary
spanned by an object and hence has zero value, can be singled out from the sinogram by first
identifying the detector locations for all angles 6 that receive contribution from this pixel; then,
for every (z1,z2), if there is even one 6 such that f(p,8) = 0, it follows that f(z1,z2) must be
zZero.

Using the above condition we can restrict the reconstruction process only to pixels within
the object boundary and exclude all zero pixels outside the object. In this way, in addition
to improving considerably the reconstruction time, we can also obtain a ‘clean’ reconstruction

o~

without any streak artifacts outside the object. Note that for real data, the condition f(p,8) =0

o~

must be replaced by f(p,0) < threshold, since in the presence of system noise, pixels outside
the object’s boundary in the sinogram can have values greater than zero. The threshold can
be determined manually by examining the sinogram values outside the object boundary, or
automatically using thresholding selecting techniques.

We have implemented the above algorithm in STIR [7], which is an object-oriented library
using C++. For this purpose, we have utilized STIR’s built-in classes and also have created a
new class to accommodate our algorithm. The speed of the algorithm was optimized by using
certain mathematical symmetries which exist in the standard case of constant detector spacing,
which is indeed the case for the Discovery ST PET scanner employed in this study.
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2.2. Simulation studies

We have used STIR to simulate the GE Discovery ST PET scanner [8]. In order to evaluate
the performance of the SRT algorithm we have employed an image quality (IQ) phantom, a
Jaszczak phantom and a slice of the digital 3D Hoffman phantom.

The IQ phantom simulates the human torso and it consists of two circular cold regions (with
diameter of 38 mm and 32 mm) and four circular hot regions (with diameters of 25 mm, 19 mm,
15 mm, and 12 mm) inside a larger warm region that simulates background. The radioactivity
ratio between hot regions and the surrounding background is 4:1 for the three hot regions. The
Jaszczak phantom is separated into six sections. Each section has cold lesions of different size
uniformly arranged to form an equilateral triangle (with circle diameters of 27 mm, 18 mm, 16
mm, 13 mm, 11 mm, 9 mm) inside a hot region 30.67 cm in diameter. The center-to-center
distance between lesions of equal diameter is twice their diameter. The Hoffman phantom
simulates the radioactivity distribution of a cerebral PET study and it consists of three distinct
radioactive regions: Gray Matter (GM), White Matter (WM), and Cerebrovascular Fluid (CSF).

After placing the three phantoms in the center of the scanner, 2D projection data were
generated in STIR using a ray tracing technique with 10 rays per detector. Scatter and
attenuation were not modeled. These sinograms provide the noiseless PET measurements. For
each noiseless sinogram, 20 Poisson noise realizations have been generated at 3 different levels
(NL1-NL3), where NL3 corresponds to the highest noise level. No filtering or smoothing has
been applied to the SRT reconstructed images post reconstruction.

The contrast for the hot and cold regions were calculated according to [8]. For the IQ
phantom, the contrast for the three smallest hot lesions was determined in each noise level by
drawing an appropriate size circular ROI to determine the average counts measured in hot lesion
and background, respectively. These values were averaged over all noise realizations. Similar
procedure was followed for the Jaszczak phantom, where the contrast for the 18 mm, 16 mm and
13 mm cold lesions was determined by calculating the mean activity in all lesions of the section.
Furthermore, a line profile was drawn through the smallest lesions of the Jaszczak phantom at
NL3, in order to determine the capability of SRT to distinguish two cold lesions placed close to
each other. The line profile has been normalized to its maximum value.

3. Results

The reconstruction time for SRT was 2.1 sec per sinogram, executed on a PC with Intel®
Core™j7-920 Processor. We note that no parallel programming or other accelerating techniques
have been employed.

Visual comparisons of the reconstructed images with no noise, as well as with noise are shown
in Fig. 1. The noisy images presented are representative reconstructions of one realization
at the specific noise level. Note that the SRT algorithm can generate negative values in the
reconstructed images. In all images presented, the all-black color corresponds to zero values,
whereas the white color represents the maximum value of the distribution. No streak artifact
are present outside the object boundary.

The contrast for the three smallest hot spheres of the IQ phantom (19 mm, 15 mm, and 12
mm) as a function of noise level, is presented in Fig. 2A. Furthermore, the contrast for three
cold sections for the Jaszczak phantom (with diameters of 16 mm, 13 mm, 11 mm) is illustrated
in Fig. 2B. The SRT algorithm exhibits high contrast (over 95%) in all cold and hot lesions
independently of noise level. Especially, SRT delivers almost 100% contrast for the cold regions.

4. Conclusion
In this work, we have presented the mathematical formulation and numerical implementation of
a new, analytic, 2D, image reconstruction method for parallel beam geometry. Simulated images
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Figure 1. The original phantoms and respesentative images at various noise levels (The noise
level increases moving from left to right): (A) No Noise, (B) NL1, (C) NL 2, and (D) NL3.
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Figure 2. A) Contrast for the hot lesions of the IQ phantom and the cold lesions of the Jaszczak
phantom. B) Line profile across the smallest cold lesions of the Jaszczak phantom at NL3.

have been reconstructed for various noise levels and have been evaluated in terms of cold and
hot lesion contrast. Overall, the SRT algorithm provided high contrast images with no streak
artifacts. Furthermore, unlike other analytic reconstruction algorithms, the reconstruction time
of SRT is comparable with that of FBP.
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