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Abstract. In this paper we report some recent progresses and open problems in the
determination of the first quantum correction at strong coupling of the dressing phases appearing
in the Bethe Ansatz equation which have been conjectured to describe the spectrum of string
theory on the AdSs x S* x T* background.

1. Introduction

Besides the two most studied examples of integrable theories in the AdS/CFT duality (AdSs x S°
and AdSy x CP?), other backgrounds allow for (classically) integrable string theories; recently
the background AdSs x S x T* got much attention. A first set of Bethe Ansatz (BA) equations
describing the asymptotic spectrum of the theory has been conjectured in [1] followed by a
second proposal in [2]. These equation, as in the AdSs 4 cases, contain a ”dressing factor” (two
different phases appear in the BA for AdS3 x S3 x T*), which is not completely fixed by the
symmetry of the problem; at strong coupling, the leading term of the dressing phase is required
to be the AFS phase [3], to match the classical finite gap limit of the model. The aim of this
paper is to report some progresses [4, 5] in understanding the first quantum correction of the
dressing phases at strong coupling, i.e. the determination of the CQQ coefficients appearing in
the expansion of the scattering phase of elementary magnons with momenta p; and py:
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where ¢, (p) is the elementary magnon n-th charge,

and the cg? are the classical AFS phase.
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2. Algebraic Curve determination of the c7(~13)
(1)

The 1-loop correction to the dressing phase and the ¢y 5 coeflicients can be computed, in principle
in a very general way, without refering to any particular solution, in the Algebraic Curve (AC)
framework, following the approach of [6]. We will need anyway an independent calculation of the
1-loop energy, done for the particular solution of a rigid circular string using the World-Sheet
(WS) method: we need this second result both to understand regularization issues and to check
the independence of the result from the missing modes in the AC, realtive to the T* component
of the background.

In the semiclassical quantisation of the AC, the first correction to the phase is encoded
in a set of potentials V; correcting the classical quasimomenta that characterize the curve:
these potentials compute the effect of the quantum fluctuations around the classical solution;
for each quasi-momentum p; the correction Vj is obtained summing over all the fluctuations
connecting the sheets of the AC. The total phase corrections to the Bethe equations are obtained
by evaluating V = Vi — V;.For the middle node 2 equation (the other BA equations are not
corrected) V(z) = Va(z) — Va(x)

V(z) = /1 dy [(Gz(y) +@§(y)), a(x) + (@(y) +G§(y))’M] )
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where x is the spectral parameter,

N dr 22
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and G the discrete resolvent defined in terms of the Bethe roots x, as:
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Expanding the resolvent in terms of the conserved charges Q,, we get:
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This result can’t be interpreted as a phase, since the coefficient are not antisymmetric in the
r, s indeces; moreover, if we apply the AC method to the case of the SU(2) circular string, we
get for the 1-loop contribution of the dressing phase to the energy (7 is the angular momentum
of the string, m the winding number):
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While, computing the 1-loop correction to the energy of the circular string in the WS
framework, and isolating the dressing part as in [7], the result is
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where AF is a discrepancy between the two approaches.

Both problems, the non-antisymmetry of the coefficients and the mismatch AFE;, can be
traced back to a regularization issue in the sum over the frequencies of the quantum fluctuations:
in the WS approach the natural cut-off is a common mode number N, while in the AC approach
the cut-off is a common radius for the contour integral in the spectral plane defining the
potentials; this difference is translated in a reordering of the terms in the sum over the frequences

to compute the 1-lopp energy Ey ~ 3. (w? — wl"), and is the origin of the AE; term. We can

nez
repeat the calculation of V enforcing the regularization of the AC curve to reproduce the WS

result, solving both problems at once: indeed, with the new prescription, we get rid of the AFE;
term obtaining full agreement with WS prediction and the the results for the new potential V
and the coefficients change in:
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Using the new regularization, we can now compute the scattering phases between magnons,
following [6]: We identify the dressing phase contribution in the BA as:
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and the result for the two phases is
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3. Folded string and open problems

The choice of regularization used in the previous section allows to separate the original potential
V = Vphase + 0V, where only the first part can be consistently interpreted as a phase, while the
second is understood as a regularization effect. Nevertheless the prescription is based on the
agreement between the AC and WS approaches in the particular case of the SU(2) curcular
string. If we consider as a second example the SL(2) folded string solution, we can repeat the
same steps: computing the 1-loop dressing contribution to the energy for the folded string, the
AC and WS give different result, and the mismatch is again due to the different regularizations.
While we can remove the discrepancy and get a consistent result on the string theory side, if we
compare the string prediction with the BA, using the phase derived in the previous section we
still have a discrepancy.
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WS = AC-reg. mismatch:  E{7508 — S?+0(8?),

BA with ¢, ¢ coeff. : EGlressmg = { S?2+0(8?).
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where the first line is the string theory result for a folded string with semiclassical spin § and
angular momentum 7, the second line is the result obtained from the BA equations, assuming
the coefficients ¢, s for the dressing phase.

This disagreement calls for a deeper understanding of the role of 0V; while the regular-
ization/antisymmetrization prescription works perfectly in the SU(2) sector, the comparison
between string theory and BA predictions for more general cases is still problematic.

Another open issue is related to the fact that the phases in eq.(7) don’t satisfy the crossing
relations found in [2]: to get crossing respecting phases the coefficients ¢, s with » = 1 should
be modified with an additional factor 1/2 [8, 9]. The relative phases for the magnon scattering
can be found starting from the original potential in eq.(1), and making the resulting phase
antisymmetric by hand #4¢2Y™(z ) = 1/2[04C (z,y) — 64¢(y,x)]. But this phase, while
crossing symmetric, gives a contribution to the 1-loop energy not in agreement with the string
theory WS prediction, even in the case of the circular string solution.
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