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Abstract. Diffusion magnetic resonance imaging (dMRI) probes the diffusion
characteristics of a sample via the application of magnetic field gradient pulses. The
dMRI signal from a heterogeneous sample includes the water proton magnetization
from all spatial positions in a voxel. If the voxel consists of different diffusion
compartments with weak exchange, while the duration of the diffusion-encoding
gradient pulses is short compared to the diffusion time (the narrow pulse
approximation), the dMRI signal can be approximated by the Karger model. A new
macroscopic ODE model for the dMRI signal was recently derived mathematically
from the microscopic multiple compartments Bloch-Torrey partial differential equation
(PDE) without the narrow pulse restriction. We illustrate by numerical simulations
that this ODE model accurately approximates the dMRI signal in a domain containing
spherical cells of various sizes, and show preliminary results on solving the inverse
problem to estimate the cellular volume fraction and surface area.

1. Introduction

A microscopic model for the diffusion magnetic resonance imaging (dMRI) signal is the
Bloch-Torrey partial differential equation (PDE) [1, 2] on multiple compartments [3].
In general, for tissue geometries containing cells with permeable membranes, analytical
solutions of this PDE are not known even for domains containing simple-shaped cells.
One needs thus to resort to numerical simulations as well as to macroscopic models.
An existing macroscopic model is the Karger model [4] which consists of a system of
ordinary differential equations (ODEs) and takes into account a certain form of exchange
between compartments. The validity of the Karger model and the “physical” meaning
of the various parameters of this model was discussed in [5]. One important limitation
of the Karger model is that the duration of the diffusion-encoding gradient pulses must
be short compared to the diffusion time (the narrow-pulse approximation, see [6]). Here

2nd International Conference on Mathematical Modeling in Physical Sciences 2013 IOP Publishing
Journal of Physics: Conference Series 490 (2014) 012117 doi:10.1088/1742-6596/490/1/012117

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



we conduct a numerical study of a recently formulated macroscopic ODE model [7] that
overcomes this limitation, in a 3D geometry containing spheres of various sizes, and solve
the inverse problem to identify unknown parameters of the ODE model.

2. Microscopic multiple compartments Bloch-Torrey PDE

The starting point of the macroscopic model is the microscopic multiple compartment
Bloch-Torrey PDE, which is a generalization of the original Bloch-Torrey PDE [1] to
heterogeneous media. Inside a representative volume C, we define many spherical
compartments, Ωsj , j = 1, · · · , P , where each Ωsj is a sphere. The complementary

set, Ωe = C\
(⋃

j Ωsj
)

, is an extracellular compartment. For the macroscopic model to

be discussed later, one can also group all cells of a certain type into a single compartment.
The complex transverse water proton magnetization M l(r, t|g) in each compartment Ωl

satisfies the Bloch-Torrey PDE [1]:

∂M l(r, t|g)

∂t
= −If(t)(γg · r)M l(r, t|g) +∇ · (D0∇M l(r, t|g)), ∀ l, (1)

where we denote the amplitude and direction of the diffusion-encoding gradient by
g = (g1, g2, g3) (normalized direction q = g/|g|) and its time profile by f(t), I the
imaginary unit, γ = 2.67513 × 108 rad s−1T−1 the gyromagnetic ratio of the water
proton, and D0 the intrinsic water diffusion coefficient. For the pulsed gradient spin
echo (PGSE) sequence [8], with two rectangular pulses of duration δ, separated by a
time interval ∆− δ, the profile f(t) is

f(t) =


1, 0 ≤ t ≤ δ,
−1, ∆ < t ≤ ∆ + δ,

0, otherwise,

(2)

where the starting time of the first gradient pulse is t = 0 and ∆ > TE/2.

We supplement the PDE in (1) with interface conditions at the interface Γln where two
compartments Ωl and Ωn come in contact. One interface condition is the continuity of
flux:

D0
(
∇M l(a, t|g) · nl(a)

)
= −D0 (∇Mn(a, t|g) · nn(a)) , a ∈ Γln, (3)

where nl(a) and nn(a) are the outward-point normals to Ωl and Ωn at a, so in fact
nl(a) = −nn(a). The second interface condition

D0
(
∇M l(a, t|g) · nl(a)

)
= κ

(
Mn(a, t|g)−M l(a, t|g)

)
, a ∈ Γln. (4)

incorporates a permeability coefficient κ across Γln. Finally, if the excitation of the
magnetization in the imaging voxel is uniform, the following initial condition is added:
M(r, 0|g) = 1, r ∈ Ωl, ∀ l. Then, same as [9], we assume that the computational
domain C = [−L1/2, L1/2]×[−L2/2, L2/2]×[−L3/2, L3/2] is extended by periodic copies
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of itself. The dMRI signal measured in experiments (without the imaging gradients and
T2 effects) is proportional to

SPDE(b) :=
∑
l

∫
r∈Ωl

M l(r, TE|g) dr, (5)

where the b-value is defined as b(g) = γ2|g2|δ2 (∆− δ/3). In a homogeneous medium,
the signal attenuation is exp(−D0b).

3. Macroscopic ODE model

By an asymptotic analysis of the cell membrane permeability coefficient κ, a macroscopic
(homogenized) model for the multiple compartment Bloch-Torrey PDE was obtained in
[7], consisting of a system of ODEs:

dSm
ODE(b, t)

dt
= −

c(t)γ2gTD
m
g +

P∑
l=1, l 6=m

1

τ lmODE

Sm
ODE(b, t) +

P∑
l=1, l 6=m

1

τml
ODE

Sl
ODE(b, t)

m = 1, · · · , P

where
1

τml
ODE

:= κ
|Γml|
|Ωl|

=⇒
τ lmODE

τml
ODE

=
|Ωm|
|Ωl|

=
vm

vl
, (6)

and |Γml| is the surface area of the interface between Ωm and Ωl; |Ωl| and vl are

respectively the volume and volume fraction of compartment Ωl (
∑P

l=1 v
l = 1). For

the pulsed gradient spin echo (PGSE) sequence, it was shown in [7]:

c(t) =


t2, 0 ≤ t ≤ δ,
δ2, δ < t ≤ ∆,

(t−∆− δ)2, ∆ < t ≤ ∆ + δ.

(7)

In the narrow pulse regime, δ � ∆, the ODE model reduces to the Karger model [4]:

dSm
KAR(b, t)

dt
= −

δ2γ2gTD
m
g +

P∑
l=1, l 6=m

1

τ lm

Sm
KAR(b, t) +

P∑
l=1, l 6=m

1

τml
Sl
KAR(b, t)

m = 1, · · · , P.

Both the new ODE model and the Karger model rely on a system of coupled ODEs,
subject to initial conditions: Sl(b, 0) = vl, l = 1, · · · , P . The total dMRI signals for the
ODE model and the Karger model are

SODE(b) =
P∑

m=1

Sm
ODE(b, TE), SKAR(b) =

P∑
m=1

Sm
KAR(b, TE). (8)

The effective diffusion tensors, D
m

, m = 1, · · · , P , in the compartments can be obtained
after solving three steady-state Laplace PDEs (see [7] for details).
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4. Numerical results

We solved the multiple compartment Bloch-Torrey PDE in the computational domain
C = [−5µm, 5µm]3 containing the cellular configuration shown in Fig. 1a, with 76
spherical cells of radii in the range 0.6 − 2.55µm, using the finite elements method
described in [10]. We set the intrinsic diffusion coefficient in all the compartments to
D0 = 3 × 10−3mm2/s. To obtain the ODE and the Karger model signals we combined
the 76 spheres to form one compartment Ωs. The extra-cellular space forms a second
compartment Ωe. The corresponding volume fractions are vs = 0.65 and ve = 0.35.
The surface of the spherical compartment is |Γes| = 1198µm2. The effective diffusion
coefficient of Ωs is D

s
= 0 because the spheres are compact. We computed the effective

diffusion tensor of Ωe (see [7] for details) to be D
e

= diag (2.20, 2.25, 2.24)×10−3mm2/s.
For simplicity, we set TE = δ+ ∆. The ODE signal is numerically solved by the Matlab
routine ode45 with absolute tolerance of 10−8. The Karger solution is obtained explicitly
by the eigen-decomposition of a 2× 2 matrix [4].

(a) Finite elements mesh of C (b) Signals: κ = 10−5m/s (c) Signals: κ = 5 × 10−6m/s

Figure 1: a) Finite element mesh of a domain C = [−5µm, 5µm]3 containing spheres of
many sizes. b) and c) DMRI signals with the PGSE sequence in the direction g = (1, 0, 0)
at two diffusion times, δ = ∆ = 10ms and δ = ∆ = 30ms, and two permeabilities
κ = 10−5m/s and κ = 5× 10−6m/s.

Figure 1b, 1c shows the dMRI signals at 20 b-values between 0 and 4000s/mm2 for two
PGSE sequences, in the gradient direction g = (1, 0, 0). The signals are labeled: “PDE”
(the multiple compartment Bloch-Torrey PDE), “ODE” and “KAR”, respectively. We
can see that the ODE signal is significantly closer to the PDE signal than the Karger
signal in these “non-narrow pulse” examples (δ is not small compared to ∆). We also
see that the ODE signal is closer to the PDE signal as diffusion time increases. Both
the ODE model and the Karger model operate with an “effective diffusion coefficient”
(the slope of the logarithm of the signal versus the b-value) that is independent of the
diffusion time. Thus, if the diffusion time is not long enough to get the “effective diffusion
coefficient” independent of the diffusion time, then the ODE and the Karger models will
definitely not be good approximations to the full PDE model. Note that this necessary
condition is not sufficient to guarantee that the macroscopic models are accurate. We
see that the slope of the logarithm of the signal curve is the same at δ = ∆ = 10ms
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and at δ = ∆ = 30ms, but the ODE signal does not give a very good approximation
to the PDE signal at the δ = ∆ = 10ms, but it give an excellent approximation at
δ = ∆ = 30ms.

Now we consider the “PDE” signals in Fig. 1b and Fig. 1c as data (without noise)
and solve the parameters estimation problem with the ODE and Karger models, i.e.,
determine the parameters of the macroscopic models from the signal. In particular,
we assume that the volume of the computational domain |C| and the permeability κ
are known, and the effective diffusion tensor of the spherical compartment D

s
is set at

0. Thus, we consider three unknown parameters: 1) the effective extra-cellular diffusion
coefficient qTD

e
q, 2) the volume fraction of spherical compartment vs, and 3) the surface

area |Γes|. The Matlab routine lsqnonlin (tolerance of 10−8) was used to find the least-
square fit of the “PDE” signal to the ODE and the Karger models. The initial guess of
qTD

e
q is D0/2, of vs is 0.5 and of |Γes| is a random number in [0.1, 10] times the true

value. Using the parameters found by the Matlab routine, we computed the resulting
SODE(bi) and SKAR(bi) at the same 20 b-values shown in Fig. 1b and Fig. 1c. From
these values we define the fitting error for each model in the following way:

Efit
ODE ≡

√√√√ 1

nb

nb∑
i=1

∣∣∣∣SPDE(bi)− SODE(bi)

SPDE(bi)

∣∣∣∣2, Efit
KAR ≡

√√√√ 1

nb

nb∑
i=1

∣∣∣∣SPDE(bi)− SKAR(bi)

SPDE(bi)

∣∣∣∣2,
where nb is the number of b-values (nb = 20 in our example). The above expressions
give a measure of the average relative error of the signal fit at all the b-values. Table 1
contains parameters estimation results for two membrane permeabilities, κ = 10−5m/s
and κ = 5 × 10−6m/s, and at two diffusion times, δ = ∆ = 10ms and δ = ∆ = 30ms;
the table also includes the fitting errors.

We see that the estimation of all three parameters is better using the ODE model
than the Karger model in these “non-narrow pulse” cases. In addition, because both
macroscopic models are better approximations of the PDE model at the longer diffusion
time (δ = ∆ = 30ms) than the shorter diffusion time (δ = ∆ = 10ms), the parameters
estimation is also more accurate at the higher diffusion time for these examples.

5. Conclusion

We illustrated by numerical simulations that a recently formulated ODE model for
the dMRI signal accurately approximates the dMRI signal from the full PDE model,
and strongly outperforms the Karger model when the duration of the magnetic field
gradient pulses is not small compared to the diffusion time. We estimated macroscopic
geometrical quantities using the full PDE signal as the data without noise, and showed
that the parameters estimation results using the new ODE model are promising. Future
work on macroscopic parameter estimation in more physically realistic settings is in
progress.
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