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Abstract. Gaussian-type orbitals (GTOs) are the most common choice of basis functions in
calculations of electronic structure of molecules, i.e. for the description of bound electrons. The
main advantage of this approach is the analytic form of the multicentre molecular integrals.
For the same reason GTOs have been adopted as basis functions for the description of the
unbound particle in many ab-initio calculations of electron, positron and laser fields interacting
with molecules. However, the accurate description of the unbound particle using GTOs may
become very difficult and in some cases numerically unstable. We describe an approach for the
representation of the continuum in which the unbound particle is described using a mixed GTO
and B-spline basis set in a manner which exploits the best features of these functions. Analytical
expressions for the GTO-only molecular integrals allow us to accurately represent the part of
the wavefunction close to the target, while the B-splines enable us to represent accurately the
wavefunction’s tail, corresponding to the unbound particle, over a wide range of kinetic energies.
The main challenge posed by this approach is the accurate and rapid numerical evaluation of a
large number of mixed BTO/GTO molecular integrals. We propose a scheme for this integral
calculation in which the overlap integrals between GTOs and B-spline functions play a central
role and demonstrate that they can be calculated rapidly and accurately.

1. Introduction

Ab-initio methods for studying molecular processes involving an unbound particle, such as the
R-matrix method [1], rely on the use of Gaussian-type orbitals (GTOs) for the description of both
the bound electrons of the molecule and the unbound particle (continuum). The central object of
the R-matrix method is the R-matrix sphere whose radius must be chosen large enough to fully
contain charge density of the molecule. The use of GTOs for the description of the continuum
(i.e. the unbound particle) becomes inaccurate or fails completely when large R-matrix radii
are needed or when high incident electron energies are required [2].

The origin of the problems in the representation of the continuum using center-of-mass
GTOs lies in the need to use functions with very diffuse exponents to guarantee that the
resulting continuum orbitals span the whole R-matrix sphere and are non-zero on the boundary.
Consequently, the orthogonal continuum orbitals (given as linear combinations of the GTOs)
can contain large coefficients and interchanging signs. The combination of those two effects may
result in loss of precision of the transformed integrals with obvious consequences for precision
of the eigenvalues of the Hamiltonian.
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Figure 1. On the left: the target molecule (pyrazine in this case). The black arrow defines the
radial coordinate for the figure on the right hand side. On the right: the R-matrix sphere has
radius 7 = a and coincides with the endpoint of the last radial B-spline. The radius for which
the continuum GTOs have been optimized is denoted as agro. The continuum radial GTOs
and B-splines are shown in green and red. The blue curve corresponds to a cross section through
a diffuse target GTO centered on the carbon atom. A compact core GTO function centered on
the hydrogen is shown in pink.

We propose a new (hybrid) approach for the representation of the continuum which aims to
improve significantly its quality and allow large R-matrix radii (= 30 — 50 ag) to be used. The
method builds on the successful use of B-splines in calculations of unbound processes involving
atoms [3, 4] and on the recent breakthrough [5, 6, 7] in calculations of two-electron molecular
integrals.

The method requires the use of basis functions of two types: standard GTOs and functions
whose radial parts are the B-spline functions (see [4] for a detailed description of B-splines).
Consequently, the main challenge posed by this approach is the calculation of the required types
of molecular integrals in the mixed GTO/B-spline orbital basis. This work presents results
of calculations of the overlap and kinetic energy integrals in the mixed basis and proposes a
framework for calculation of the rest of the mixed one- and two-electron molecular integrals.

2. The choice of the continuum basis

Figure 1 illustrates concisely our approach for the representation of the continuum. The R-
matrix radius a is chosen large enough to fully contain the molecule’s atomic basis functions
(more precisely the molecular orbitals). This radius is determined by the spatial extent of the
most diffuse target GTOs. However, the atomic core and polarization functions usually have
a smaller spatial extent and can be fitted inside a sphere with the radius agro < a. This
sphere will always contain only GTOs and therefore we call it the GTO sphere. Based on this
observation we construct the continuum basis from two types of functions:

e GTOs centered on the center of mass (CMS) of the molecule and optimized for use
with the radius agro. These functions are generally nonzero inside the whole R-matrix
sphere: r € [0, a].

e B-spline orbitals (BTOs) centered on the CMS which span only the radial range:
r € lagro,al. (The exact form of these functions is defined in Appendix A).

Consequently, the only basis functions which are non-zero in the region outside the GTO
sphere are the BTOs, continuum GTOs and some target (usually diffuse) GTOs. This hybrid
approach for representation of the continuum has several important properties:

e The quality of representation of the continuum inside the GTO sphere is given by the
choice of the continuum GTOs. We can control the quality of the continuum inside the
GTO sphere by changing its radius (and/or the corresponding continuum GTOs) [8].
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e The product of a BTO and those target GTOs fully enclosed by the GTO sphere is
identically zero. The product of a BTO and the remaining GTOs is generally non-zero.

These properties may be used to achieve significant savings in the computational cost of
calculating the mixed GTO/BTO molecular integrals. The most computationally demanding
part of the calculation are the mixed BTO/GTO two-electron integrals:

(611755 o2} = / dry / draa(r1)b(r1)riy c(rz)d(xs), (1)
$1(r1) = a(r1)b(r1), ¢2(r2) = c(ra)d(ra), (2)

where at least one of a(r1),b(r1) and/or ¢(rz),d(rz) is a BTO and the rest of the functions are
GTOs. Utilizing the properties listed above these integrals can be split into three classes:

(i) Identically zero two-electron integrals. This class contains integrals in which at least one
of the densities (¢1(r1) and/or ¢2(rz)) contains the product of a BTO and a GTO fully
enclosed by the GTO sphere.

(ii) The densities ¢1(r1) and ¢2(ra) are spatially separated. This situation arises when e.g. the
density ¢1(r1) involves at least one GTO which is fully enclosed by the GTO sphere while
the density ¢o(rz) involves the product of a BTO with a GTO that is non-zero outside the
GTO sphere.

(iii) The densities ¢1(r1) and ¢2(rz) spatially overlap, i.e. they both involve products of
functions that are non-zero outside the GTO sphere.

Depending on the choice of agro we can determine which target functions are fully enclosed
by the GTO sphere and therefore assign each two-electron integral into one of the three
classes. Class (ii) integrals can be calculated using the multipole expansion of the Coulomb
interaction [9]. The most difficult case are the class (iii) integrals. To calculate them we suggest
using the method based on resolution of the Coulomb operator into single-particle functions [7]
centered on the CMS:

n

ri A Y k() gn(ra) = (G1lrig|o2) = D (v (d2le)- (3)

k=1 k=1

The same approach can be used to calculate the mixed one electron nuclear attraction
integrals. We can see that the calculation of the mixed GTO/BTO overlap integrals plays
a crucial role in the suggested approach.

3. Interaction-free electron scattering

As the first step towards implementing the proposed approach for the representation of the
continuum we calculated the mixed GTO/BTO overlap and kinetic energy integrals utilizing
the CMS-centered partial wave expansion of the GTO. Formulae for these integrals can be
found in Appendix A. In order to test the approach on a realistic system we solved, using
the R-matrix method, the one-electron free potential scattering problem. In order to solve this
problem we also needed the GTO/GTO and BTO/BTO overlap and kinetic energy integrals
whose evaluation is trivial.

To mimic the description of the continuum electron in the R-matrix suite the set of orbitals
used were those of the continuum and the Hartree-Fock (HF) molecular orbitals of two selected
molecules: water and pyrazine. In order to obtain a set of orthogonal orbitals we utilized the
standard procedure used in the molecular R-matrix calculations: the HF (orthogonal) orbitals
were kept unchanged throughout the calculation. Orbitals based on the CMS continuum GTOs
and BTOs were first Schmidt orthogonalized to the target orbitals and then symmetrically
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Figure 2. Eigenphase sums for interaction-free scattering from water (C, symmetry) and
pyrazine (Dsp symmetry) for the totally symmetric contribution. The exact eigenphase sum is
zero. The colour lines are for results when both the GTOs and BTOs were used; the starting
radius for the BTOs (agro) is indicated in the Figure.

orthogonalized among themselves. Finally, all continuum orbitals with eigenvalues of the
continuum-continuum overlap matrix smaller than 10~7 were deleted. In all calculations we
used the same continuum GTO basis optimized for a radius agro = 10ag. The BTO radial
basis consisted of B-splines of order 8 with break points separated by 1 a¢ and spanning the
radial distance of 29ay. This set of radial B-splines was kept fixed and only translated along the
radial coordinate according to the value of agro. For water (pyrazine) an R-matrix radius a of
10ap (18ag) was sufficient to enclose all target orbitals.

Figure 2 shows the results obtained when the target orbitals were those of water (6 orbitals
of Ay symmetry) and pyrazine (14 orbitals of A, symmetry). We show only the results obtained
for scattering in the totally symmetric irreducible representation; results for the rest of the
symmetries were similar. For water we show the eigenphase sum obtained when only GTOs
(and a = 10agp) were used for the continuum as well as the result obtained when only the BTOs
(agro = 0 and a = 28ag) were used for the continuum. In both cases (water and pyrazine) we
observe a rapid and systematic improvement of the quality of representation of the continuum as
agro decreases, i.e. as the BT Os are pushed closer towards the CMS. Clearly, for agro = 6ag we
already obtain eigenphase sums which are for all energies smaller than the value of the smallest
eigenphase sum obtained for agro = 10ag.

The relative precision of the overlap and the kinetic energy integrals was never worse than
10719 for pyrazine and 10~13 for water. As expected based on the properties of the partial wave
expansion of the GTO, the relative precision of the integrals generally decreases as the distance of
the center of the GTO from the CMS is increased and as the angular momentum and exponent of
the GTO are increased. The only numerical problems (loss of precision) were detected during the
integral transformation step; we are currently investigating possible resolutions of this problem.
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The calculation of the mixed GTO/BTO integrals utilized the point group symmetries of the
target molecules and in both cases took = 9.7s on an Intel Xeon 2.50 GHz workstation.

4. Conclusions

We propose and test a methodology for a hybrid GTO/BTO representation of the continuum
that can be used for calculations of electron, positron and light interactions with molecules. This
approach was found to be much more accurate than our currently employed GTO-only approach.
We showed that the mixed GTO/BTO overlap and kinetic energy integrals can be calculated
accurately and efficiently. Somewhat surprisingly we found that the most serious numerical
problem is the loss of precision that may occur on the level of the integral transformation.
The numerical stability of the mixed BTO/GTO primitive overlap and kinetic energy integral
calculation can be controlled for and does not appear to cause significant problems.

Appendix A. Overlap and kinetic energy integrals between GTOs and BTOs
We use GTOs in the standard form:

2(200)LH+3/2 2L + 1
T[L+3/2] 47

Xarm(r —R) = NSTOS 1 (r — R) exp[—alr — RJ?], NSTO = ¢ (A1)

where R is the radius vector pointing in the direction of the centre of the GTO, « is the exponent
of the GTO and L, M describe the angular dependence of the GTO through the normalized real
solid harmonics Sz (r — R) centered at r = R. We follow the standard conventions [10] for the
definition of the real solid harmonics. The normalization factor N gg O is chosen to reproduce
the unit self-overlap of the GTO. The B-spline orbital centered on the center of mass of the
molecule (BTO) is defined by the equation:

o) = NPTOP o, o = [ [ o). (A2

where X7, ps,(F) is the normalized real spherical harmonic [11], r is the distance from the origin,
NZ»BTO is the normalization factor chosen to reproduce the unit self-overlap of the BTO and
B;(r) is the B-spline function in coordinate r (piecewise polynomial with compact support);
tiy. .., tiyr is the set of k+1 knots, where k& > 0 is the order of the B-splines (see [4] for details).

The overlap integral between a GTO (not centered on the CMS) and a BTO is given ezactly
by a finite sum of terms originating in the partial wave expansion of the GTO [12] and has the
form:

. 41 nLM L m/ R
(XarLMm|BE 1) = WNZBTONQGLTO > dEM (et oy ,RJX, (R) X
j=1

77L[L‘L l
X > Rinla, R) D (LM A |im) p Xy (R), (A.3)

I=lmin m=—1
where diM are coefficients in the translation formula [13] for the real unnormalized solid
harmonics zpp(ry + r2):

nrm
zpm (v +19) = Y dfM ()2 % ! (12), (A4)
j=1

27 (1 + dpr0) (L + [ M])!
oL +1 (L— M)

zm(r) = (DMt Xom (2), Zom = \/
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(LiM;|\jpj|lm) g are the Gaunt coefficients for the real spherical harmonics and
titk ~
Ry i(a, R) = / drBi(r)r™ 2 exp[—a(r — R)?I}1/2(20rR) (A.6)
t;

are the radial integrals in which fl+1/2(2arR) = exp[—2arR|I[;1/2(2arR) stands for the
exponentially scaled modified Bessel function. These radial integrals are obtained using an
adaptive numerical quadrature. In order to speed up the calculation we use recurrent relations
for R; , (o, R) which (for fixed 7,« and R) couple the A and | parameters:

[+1/2

Rixi—1(o, R) = Ri y141(a, R) + oR

Rix—11(o, R). (A.7)

These recurrent relations can be derived using the well-known downward (numerically stable)
recurrent relation for the modified Bessel functions I;,/5(x). The formula for the kinetic energy

integral (xara|A|BY ) retains the same form as (A.3) with exception of the radial integral
which has the form:

tl+k " ~
Rf/\j,l(aa R) = /t drB; (r)r’ 2 exp[—a(r — R)Z}IIH/Q(QOWR) —

- LZ(Ll + 1)Ri,)\j72,l(a7 R)7 (A8)

where B; (r) stands for the second derivative of the B-spline B;(r). The relative precision of the
individual terms entering (A.3) is not lower than ~ 10~!4 and the only loss of precision may occur
as a result of subtraction of competing partial-waves when the overlap (or the kinetic energy)
integral is close to zero due to symmetry. However, the occurrence of these instabilities can be
mitigated by the choice of the breakpoint sequence for the radial B-splines which destroys the
spatial symmetry of the integrand x.rar(r — R)BiLi 2, (r). Other means by which the calculation
can be stabilized are being investigated.
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