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Abstract. The regularization of ill-posed problems has become a useful tool in studying
initial value problems that do not adhere to certain desired properties such as continuous
dependence of solutions on initial data. Because direct computation of the solution becomes
difficult in this situation, many authors have alternatively approximated the solution by the
solution of a closely-defined well-posed problem. In this paper, we demonstrate this process of
regularization for the backward heat equation with a time-dependent diffusion coefficient, among
other nonautonomous ill-posed problems. In the process, we provide two different approximate
well-posed models and numerically compare convergence rates of their solutions to a known
solution of the original ill-posed problem.

1. Introduction
In this paper, motivated by the recent work of Trong and Tuan [9, 10], we illustrate regularization
for certain nonautonomous ill-posed problems and demonstrate an array of numerical estimates
for the regularization of the backward heat equation in L2[0, π] with a time-dependent diffusion
coefficient, e.g.

∂u

∂t
= −et∂

2u

∂x2
, 0 < x < π, 0 < t < 1 (1)

u(0, t) = u(π, t) = 0, 0 < t < 1

u(x, 0) = φ(x), 0 < x < π.

Because solutions u may not exist or, if they do exist, generally do not depend continuously on
initial data, numerical calculations are often difficult. The regularization of the problem offers
an alternate method of obtaining information about such solutions u through comparison to
the solution of an approximate well-posed problem. For example, for ε > 0, one may consider
an approximate solution vε where the model in (1) is replaced by Lattes and Lions’s quasi-

reversibility method ∂v
∂t = −et ∂2v

∂x2
− ε ∂4v

∂x4
(cf. [5]).

Regularization for ill-posed problems, particularly the abstract Cauchy problem du
dt =

Au(t), 0 ≤ t < T, u(0) = φ, where A is an operator in a Banach space X, e.g. A = −∆
in X = Lp(R), has been established in various settings by authors including Lattes and
Lions [5], Miller [7], Showalter [8], and more recently Mel’nikova and Filinkov [6], Ames and
Hughes [1], and Huang and Zheng [3, 4]. Very recently, error estimates for regularization
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of the backward heat equation have been scrutinized by Trong and Tuan (cf. [9, 10]). In
[9], using the quasi-reversibility method, they determine a table of numerical estimates for
‖u(x, 0.5)− vε(x, 0.5)‖L2(0,π) depending on different values of ε limiting to 0.

The tables that we provide in this paper extend the work of Trong and Tuan to the
nonautonomous equation (1) and also encompass the difference ‖u(x, t)− vε(x, t)‖2 for multiple
values of t in [0, 1]. Further, our paper illustrates two methods of regularization for other
higher order nonautonomous ill-posed problems. The results of this paper find that the quasi-
reversibility method yields a much faster convergence of the well-posed solution vε to the solution
u of the ill-posed problem, as compared to a second method following Showalter [8].

2. Regularization
In this section, we provide background theory which explains the way in which problem (1),
among other higher-order equations, may be regularized by the methods we propose. Consider
the nonautonomous ill-posed problem

du

dt
= a(t)Aku(t), 0 ≤ t < T, u(0) = φ (2)

in a Hilbert space H where A is a positive, self-adjoint operator in H, k is a positive integer,
and a ∈ C([0, T ] : R+). The regularization of this problem is defined as follows.

Definition 1. [4, Definition 3.1] A family {Rε(t) | ε > 0, t ∈ [0, T ]} of bounded linear operators
on X is called a family of regularizing operators for the problem (2) if for each solution u(t) of
(2) with initial data φ ∈ H, and for any δ > 0, there exists ε(δ) > 0 such that

(i) ε(δ)→ 0 as δ → 0,

(ii) ‖u(t)−Rε(δ)(t)φδ‖ → 0 as δ → 0 for 0 ≤ t ≤ T whenever ‖φ− φδ‖ ≤ δ.

In order to define a regularizing family, we consider an approximate well-posed problem

dv

dt
= fε(t, A)v(t), 0 ≤ t < T, v(0) = φ (3)

where ε > 0 and fε(t, A) is defined by either of two examples fε(t, A) = a(t)Ak − εAk+1 or
fε(t, A) = a(t)Ak(I + εAk)−1, the first being a generalization of Lattes and Lions’s quasi-
reversibility method [5] and the second motivated by work of Showalter [8]. In [2], Fury
and Hughes show under certain stabilizing conditions on a known solution u(t) of (2), e.g.

‖u(T )‖ ≤ M ′, that ‖u(t) − vε(t)‖ ≤ Cε1−
t
TM

t
T , 0 ≤ t < T where vε(t) = e

∫ t
0 fε(τ,A)dτφ is

the unique solution of (3) and C and M are constants independent of ε ([2, Theorem 3.9,
Example 4.1, Example 4.2]).

Hence, with the aid of this inequality, we may define Rε(t) = e
∫ t
0 fε(τ,A)dτ as a regularizing

operator in which case vε(t) = Rε(t)φ. Regularization is then established by the calculation
‖u(t) − Rε(t)φδ‖ ≤ ‖u(t) − vε(t)‖ + ‖Rε(t)φ − Rε(t)φδ‖ → 0 as δ → 0 where the first quantity
tends to 0 if ε→ 0 as δ → 0, while the second quantity on the right tends to 0 as δ → 0 because
(3) is well-posed (and so satisfies continuous dependence on initial data). Choosing ε in terms
of δ typically depends on the growth order of ‖Rε(t)‖. Generally, this is not difficult and will
be illustrated explicitly in the following section.

3. Numerical Estimates
Following recent work of Trong and Tuan [9, 10], we illustrate the process of regularization
discussed in Section 2 for concrete partial differential equations represented by (2) and provide
tables of numerical estimates for the regularization.
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Example 1. Let us consider, in H = (L2[0, π], ‖ · ‖2) where ‖φ‖2 = (
∫ π
0 |φ(x)|2dx)1/2 for

φ ∈ L2[0, π], the following nonautonomous partial differential equation by setting A = −∆ and
a(t) = et in (2):

∂u

∂t
= (−1)ket

∂2ku

∂x2k
, 0 < x < π, 0 < t < 1 (4)

u(0, t) = u(π, t) = 0, 0 < t < 1

u(x, 0) = e sin x, 0 < x < π.

The problem (4) is ill-posed with exact solution u(x, t) = ee
t
sin x. In order to illustrate

regularization for (4) we will consider a perturbed initial data φn(x) = e sin x + 1
nsin(nx)

which converges to u(x, 0) = e sin x as n → ∞. The approximate well-posed problem (3)
according to the first approximation fε(t, A) = etAk − εAk+1 becomes

∂v

∂t
= (−1)k

(
et
∂2kv

∂x2k
+ ε

∂2k+2v

∂x2k+2

)
, 0 < x < π, 0 < t < 1 (5)

v(0, t) = v(π, t) = 0, 0 < t < 1

v(x, 0) = e sin x+
1

n
sin(nx), 0 < x < π

with solution vnε (x, t) = ee
t−εtsin x+ 1

ne
(et−1)n2k−εtn2k+2

sin(nx). For 0 < t ≤ 1, assuming n > 1,

it is easy to show that ‖u(x, t) − vnε (x, t)‖2 =
√

π
2

√[
eet(1− e−εt)

]2
+
[
1
ne

(et−1)n2k−εtn2k+2
]2

.

Because of the negative leading term −εtn2k+2 in the exponent of the last exponential, ε may
be chosen as ε = e

n2 , in which case we have that ε→ 0 as n→∞ and

‖u(x, t) − vnε (x, t)‖2 =
√

π
2

√[
eet(1− e−

et
n2 )
]2

+
[
1
ne

(et−1−et)n2k
]2 → 0 as n → ∞ since

et−1−et < 0 for 0 < t ≤ 1. Note for the case that t = 0, we simply have ‖u(x, 0)−vnε (x, 0)‖2 =
‖e sin x− φn(x)‖2 = 1

n

√
π
2 → 0 as n→∞. Hence, regularization is complete.

Note that when k = 1, (4) becomes the backward heat equation with time-dependent diffusion
coefficient et. Table 1 shows numerical estimates for ‖u(x, t) − vnε (x, t)‖2 in this specific case
(k = 1) based on different values of n and t and assuming the choice ε = e

n2 .

Table 1.

!""" !"""" !""""" !""""""
" "#""!$%&&!' "#"""!$%&&! !#$%&&!()"% !#$%&&!()"*

"#! !#"$+,+()"* !#"$+,+()"+ !#"$+,+()!" !#"$+*!()!$
"#$ $#&!!!,()"* $#&!!!+()"+ $#&!!!,()!" $#&!!$*()!$
"#& &#-'!-*()"* &#-'!-*()"+ &#-'!-*()!" &#-'!+&()!$
"#' *#"%,*,()"* *#"%,*,()"+ *#"%,*,()!" *#"%,+-()!$
"#% +#+%+&-()"* +#+%+&-()"+ +#+%+&-()!" +#+%+&*()!$
"#* !#$*'$,()"% !#$*'$+()", !#$*'$+()"- !#$*'$'()!!
"#, !#,+*%'()"% !#,+*%%()", !#,+*%%()"- !#,+*%*()!!
"#+ $#%$&&-()"% $#%$&&-()", $#%$&&-()"- $#%$&&%()!!
"#- &#%+,',()"% &#%+,'+()", &#%+,'+()"- &#%+,%&()!!
! %#!*$+'()"% %#!*$+%()", %#!*$+%()"- %#!*$+$()!!

t

n

‖u(x, t)− vnε (x, t)‖2
Table 2.

!""" !"""" !""""" !""""""
" "#""!$%&&!' "#"""!$%&&! !#$%&&!()"% !#$%&&!()"*

"#! "#!$++*"++% "#!"**$,+$ "#"+"'"&$' "#"-,'*&&+!
"#$ "#&"!'-$+-* "#$',$!-+,$ "#$!"+%$'!% "#!,&'!'!,&
"#& "#%&"'$!+"! "#'&,&-,&%- "#&-&%'$',, "#&$%'"*+"$
"#' "#,&+,$***% "#*+*+%''+, "#%+%%,"!& "#%!++$+&&%
"#% !#$*&*!%!+ !#"%&&%"!!' "#+"$+%%,'' "#-+"",'!"%
"#* !#,%$**&,'' !#%%!+""%$+ !#&&',*&!*! !#!-"+'+$,,
"#- $#*,'-"*$"* $#$*"-&!%& !#+%!--*&"' !#-!*,!,%+
"#, &#,,"+',+"% &#$,**+'"$% $#,',+%&%*! $#%!&'+'-!,
"#+ %#*&'*"$!,% '#,"!!',-$- '#!-+,',$"! &#*++*-!,"*
! ,#$*!!&,$$% -#",%*'$*,' *#!+--%,-*& %#%"%!"%%-%

t

n

‖u(x, t)− wnε (x, t)‖2

Alternatively, we may consider the well-posed problem according to the second approximation
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fε(t, A) = etAk(I + εAk)−1. Here, problem (3) becomes

∂w

∂t
= (−1)k

(
et
∂2kw

∂x2k
− ε∂

2k+1w

∂x2k∂t

)
, 0 < x < π, 0 < t < 1 (6)

w(0, t) = w(π, t) = 0, 0 < t < 1

w(x, 0) = e sin x+
1

n
sin(nx), 0 < x < π

with solution wnε (x, t) = e
et+ε
1+ε sin x + 1

ne
(et−1)n2k

1+εn2k sin(nx). Note, for 0 < t ≤ 1, again assuming

n > 1, it may be shown that ‖u(x, t)−wnε (x, t)‖2 =
√

π
2

√[
eet − e

et+ε
1+ε

]2
+

[
1
ne

(et−1)n2k

1+εn2k

]2
. This

time, a reasonable choice is to choose ε so that 1
ne

(et−1)n2k

1+εn2k grows like 1√
n

. Equating these two

quantities, and setting t = 1, we arrive at ε = (e−1)n2k−ln
√
n

n2k ln
√
n

. Hence, ε→ 0 as n→∞ and

‖u(x, t) − wnε (x, t)‖2 =
√

π
2

√[
eet − e

(etn2k−1)ln
√
n+(e−1)n2k

(n2k−1)ln
√
n+(e−1)n2k

]2
+ n

et−1
e−1
−2 → 0 as n → ∞.

Again for the case that t = 0, we have ‖u(x, 0) − wnε (x, 0)‖2 = ‖e sin x − φn(x)‖2 = 1
n

√
π
2 →

0 as n → ∞. Regularization is thus accomplished in the case of the second approximation.
Returning again to regularization of the backward heat equation, Table 2 shows estimates for
the difference ‖u(x, t) − wnε (x, t)‖2 in the case that k = 1, based on different values of n and t

and assuming ε = (e−1)n2−ln
√
n

n2 ln
√
n

.

In comparing Table 1 and Table 2, we note that the convergence to 0 in the case of the second
approximation is considerably slower than that in the first approximation.
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