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Abstract.
All thermonuclear controlled fusion devices under construction or design have such high

performances to require a special care in the dimensioning of various components, specifically
from the electromagnetic point of view. To this purpose, it is fundamental to develop models
which are both accurate (i.e. able to describe the physical phenomena) and predictive (i.e. useful
not only to explain what happens in running experiments, but also to reliably extrapolate to
other range of parameters).

The dynamics of fusion plasmas is often conveniently described by Magneto-Hydro-Dynamics
(MHD) equations, which predict that some unstable evolution modes may exist. On the other
hand, the complexity of the intrinsically 3D model of the interactions between a realistic unstable
plasma, the surrounding passive structures (important to guarantee a good MHD stability)
and the active conductors (coils) require the numerical solution of challenging electromagnetic
problems.

In this work a discrete geometric formulation for eddy-current problems in the frequency
domain is developed; the magnetic fields produced by a typical active coil system is calculated
in the presence of 3D conductive structures.

1. Introduction
The dynamics of fusion plasmas is often conveniently described by Magneto-Hydro-Dynamics
(MHD) equations, which predict that some unstable evolution modes may exist [1], [2]. The
MHD modes are usually categorised using the toroidal mode number n, i.e. the harmonic index
of a Fourier decomposition of plasma perturbations along the toroidal direction.

While some MHD instabilities develop on very fast timescales (few milliseconds) and are
only marginally influenced by the interaction with the structures surrounding the plasma,
one particular category, known as Resistive Wall Modes (RWMs), critically depends on
the detailed characteristics of the conductive wall and in particular on its non-uniformities
and its typical penetration time for electro-magnetic perturbations [3]. Close-fitting passive
conducting structures are an efficient way to prevent the growth of magnetohydrodynamic
(MHD) instabilities, but are not suitable for a steady state fusion reactor, because of the finite
diffusion time of any material shell.

Given the relatively slow growth rate of RWMs, feedback control by means of active coils is
possible and is at present one of the most active research fields. RWMs can develop in both
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tokamak and Reversed Field Pinch (RFP) devices and for both they represent one of the most
important performance limiting MHD instabilities [4], [5]. In general, given the characteristics of
both the target instability and the active control method, successful experiments and modelling
take greatly advantage of a careful knowledge of the impact of 3-dimensional effects in the
mode dynamics [6]. In fact, when the plasma is in presence of closed loop control actions, eddy
currents in 3D conducting structures and plasma perturbations will evolve in a coupled way. The
comprehension of their interaction represents a very complex problem both on the experimental
side and the modelling one [7]. The controller design itself needs an accurate evaluation of all
the effects in the coil actions due to the non uniformities of the passive boundary [8], [9].

In this paper we focus on the problem of carefully computing the interactions between active
conductors (coils) and passive structures surrounding the plasma.

2. Discrete Geometric Formulation
A discrete geometric formulation for eddy-current problems in the frequency domain is presented,
which is based on the circulation of the magnetic vector potential over hexahedral grids.

The 3-D domain of interest D is covered by a mesh of generic hexahedra, whose incidences
are encoded in the cell complex K represented by the standard incidence matrices G, C and D
[10]. A dual barycentric complex K̃ is obtained from K by using the barycentric subdivision; its
incidence matrices are G̃ = DT , C̃ = CT and D̃ = −GT .

Three subdomains of D are identified: the passive conductive region Dc (including all
conductive structures surrounding the plasma, see Fig.1), the non-conductive region Da (vacuum
or air –outside the vacuum vessel), and the source region Ds (active coils used to control the
plasma instabilities).

When modeling stranded coils, it is useful to introduce integral sources, which avoid to cover
Ds with a fine mesh. With this aim, the circulations of the magnetic vector potential A along
primal edges e ∈ D can be expresses as A = As + Ar, where Ar are the circulations of the
magnetic vector potential due to eddy currents in Dc and As are the circulations of the magnetic
vector potential produced by the sources in Ds.

By combining the discrete Ampère’s law and Faraday’s law with the discrete counterpart of
the constitutive laws for the flux density B and the current density J, a symmetric complex
linear system of equations is obtained [9],

(CTνC)Ar = 0, ∀e ∈ Da
⋃
Ds

(CTνC + iωσ)Ar = −iωσAs, ∀e ∈ Dc

(1)

Figure 1. Sketch of a representative machine. The passive conductive region Dc includes two
closed toroidal structures (dark red) and a massive conductive structure (gray) facing the plasma
region. A set of typical saddle coils devoted to the active control of RWMs are also shown.
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where ω is the angular frequency, ν and σ are square matrices that require metric notions,
material properties, and some hypothesis on the fields in order to be computed.

On the RHS, As denotes the circulations of the magnetic vector potential along e ∈ Dc

produced by the sources in Ds, only; each entry of As can be computed with standard closed
formulas.

The sparse and symmetric linear system (1) is solved with a standard tree-cotree gauge, using
a state-of-the-art direct solver (PARDISO, included in the Intel MKL library).

3. Numerical results
The proposed approach has been applied to calculate the magnetic field produced by a set of
saddle coils, individually fed by sinusoidal currents, in the presence of three main conductive
structures of a representative machine (see Fig. 1). It must be noted that for this particular
geometry it would be possible to model only a part of the geometry due to its toroidal symmetry.
Nonetheless, we developed a tool considering the most general application, since most fusion
reactors we aim to study present no symmetries at all.

The module of the current density induced on the most relevant structure (facing the plasma)
by a sinusoidal current feeding a single saddle coil is shown in Fig. 2. Due to linearity, any
combination of currents feeding the RWM coils can be calculated by superposition.

The geometric elements of the mesh are summarized in Table 1, together with degrees of
freedom (DOFs) and non zero entries (NNZs) of the system matrix. The numerical solution
of the problem by means of a numerical code (CAFE), takes less than 10 minutes1, including
pre-processing (assembling of the system matrix and its RHS) and post-processing (calculation
of the magnetic field components by Biot-Savart’law).

The shielding effect of the conductive structure is clearly visible in Fig. 3 where the amplitude
of the magnetic flux density is presented (for different frequencies in the range 0− 100Hz) as a
function of the distance along the radial direction from the centre of the coil towards plasma.

4. Conclusions
The development of methods for the active control of MHD instabilities and for the correction
of error fields is mandatory in view of fusion reactors. A discrete geometric formulation for
eddy-current problems in the frequency domain is introduced to calculate the effects on active
control systems of 3D conductive structures surrounding the plasma in a representative machine.

1 CAFE (Computer Aided Fusion Engineering), research code developed by first and third authors, runs on a
workstation equipped with two 8-core processors (Xeon E5-2680 2.7GHz 20MB) and 256GB DDR3-1600 RAM.

(a) (b)

Figure 2. Module of the current density induced on the conductive structure facing the plasma
by a sinusoidal current feeding a single saddle coil: (a) f = 10Hz, (b) f = 100Hz.
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Figure 3. Amplitude of the magnetic flux density as a function of the distance along the radial
direction from the centre of the coil towards plasma.
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Table 1. Geometric elements (nodes, hexahedra, edges) of the mesh. Corresponding degrees of
freedom (DOFs) and non zero entries (NNZs) of the system matrix.

Nodes 819,789

Hexahedra 807,408

Edges 2,447,132

DOFs (with gauge) 1,752,331

NNzs (with gauge) 22,379,984
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