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Abstract. In this paper we revise the main features of pseudospin and spin symmetries of
the Dirac equation with scalar and vector potentials and mention several of its applications
to physical systems. These symmetries have been extensively researched in the last 15 years,
especially pseudospin symmetry, mainly in its application in understanding certain nuclear
structure features of heavy nuclei. The realization of both symmetries has also been studied
using several mean-field scalar and vector potentials. For many classes of potentials, these
symmetries allow to have analytical solutions of the Dirac equation which otherwise would not
have been possible. We report here some recent results related to anti-fermions, Coulomb and
confining potentials.

1. Introduction

Pseudospin symmetry has been a topic in nuclear physics since the late 60’s, when it was
introduced to explain the near degeneracy of some single-particle levels near the Fermi surface.
The subject was revived in 1997 when Ginocchio was able to relate it with a symmetry of
the Dirac equation with scalar S and vector V' mean-field potentials such that V = —S + C
where C' is a constant. However, this symmetry cannot be realized exactly in nuclei because
the sum potential V + S provides the binding of nucleons in nuclei. A related symmetry, the
spin symmetry, was used to explain the suppression of spin-orbit splittings in states of mesons
with a heavy and a light quark. In ref. [1] is reviewed the emergence of these symmetries as
relativistic symmetries for the Dirac equation, as well as some of its applications. Those findings
spurred much research about pseudospin symmetry in nuclei, including such topics as its very
nature (how it is broken, whether is perturbative or not) [2, 3|, the role of isospin [4, 5, 6] the
effect of tensor potentials [7] and its realization under harmonic oscillator potentials [8]. Other
theoretical studies showed the supersymmetric features of spin and pseudospin [9] and others
were concerned with the realization of those symmetries for anti-fermions [10, 11, 12, 13]. More
recently it was shown that pseudospin symmetry can be applied to ressonant states [14].
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In this paper we will review briefly the origin of spin and pseudospin symmetries in the Dirac
equation, its generators, both for general potentials and radial potentials, and their quantum
numbers. Finally we report about the main conclusions of recent works, namely about the
perturbative nature of spin and pseudospin symmetries, how they are realized for fermion and
anti-fermion systems with Coulomb potentials [15], and also how their realization depends on
the asymptotic behaviour of the radial scalar and vector potentials in the Dirac equation [16].

2. Spin and pseudospin symmetries in the Dirac equation

The time-independent Dirac equation for a spin 1/2 particle with mass m and energy E, under
the action of external scalar, S, and vector, V, potentials reads

. ) (0 a) (I 0 )
Hy=la-pc+p(mc+S)+ V] =Ey, where a= , B= (1)
o 0 0 —I

and o are the Pauli matrices. Projecting the spinor ¢ into its components ¥+ = Py, i.e.,

(i) ()

where Py = [(I £ 3)/2]%, and ¢ and x are respectively the upper and lower two-component
spinors, and applying them to the Dirac equation (1) we get two coupled equations for ¢4 :

ca-p + (S +mc®) by = By ca-py + (A —me*) - =Ey_, 3)
where X =V +Sand A=V - 8S.

2.1. Spin symmetry

If A =0 (V =.29) and after multiplying it by ca - p, the second equation in (3) becomes
P°/(E/c? +m) b, = (E —mc® — Xy, which is invariant under the transformation [17]

¥ 0
o = S0 &=<‘g a>. (4)

Since ¢ = (ca- p)/(E + mc?) 1, and defining d1) = € - §/(2i)1, we can write the generators
of this symmetry, called spin symmetry, as

o 0
a-pP_: 0 O"f)g;d'f) . (5)

These generators commute with the Hamiltonian in (1) when V' = S and form an SU(2) algebra,
ie., [S;i,S;] = 2iei;,Sk. The physical significance of this symmetry can be understood by looking
at the second-order differential equation for ¢4 when scalar and vector potentials are radial

S=6P,+a p
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Py +
where primes denote derivation with respect to r and S = (h/2)& , L = r x p. From this last
equation is clear that the physical significance of spin symmetry is the disappearance of the spin-
orbit coupling in a relativistic theory. In this case there is another SU(2) symmetry connected to



2nd International Conference on Mathematical Modeling in Physical Sciences 2013 IOP Publishing
Journal of Physics: Conference Series 490 (2014) 012069 doi:10.1088/1742-6596/490/1/012069

the orbital angular momentum, whose generators are L = LP; + o -p # a - p P_. Indeed, one

can check that one has £21) = h% £(¢ + 1)1, where £ is the orbital angular momentum quantum
number of the upper component. This is true in spite of the fact that the upper and lower
components of the Dirac spinor have different orbital angular momentum quantum numbers,
since Y = (i gu(r) /1 $rm; (0,9) 0)and L = (0 — fa(r)/r ¢rm;(0,¢) ), where k = —(¢+1)
if j =0+ % ,k=L0ifj=10— % , and kK = —k. The orbital angular momentum of the lower
component, £, is given by ¢ = ¢ — k/|k|. This means that levels with the quantum numbers
(n,l,j =1—1/2) and (n,l,j =1+ 1/2) are degenerate (relativistic fermion levels are classified
according to the quantum numbers of the upper component of their Dirac spinor). Note that
the results above would still be true if A were just a constant.

2.2. Pseudospin symmetry

If ¥ =0 (V = S) or a constant, one can repeat the arguments of the previous section
for the spinor ¢, whose second-order equation would be a Schroedinger-like equation. The
corresponding symmetry, the pseudospin symmetry, has the SU(2) generators S = 6P_ + « -
D f% a-p P, =~°8. This symmetry implies that the spin-orbit coupling for the lower component

of the Dirac spinor disappears, as can be seen from the second-order radial equation for _
2L - S n2y’ op_ 1

~9 P _ _
pw_—i_E—E—mc2 E—-Y—mc? Or c?

(E-A4+mc®)(E-X—mc®yp_ . (7)

Again, in this case, there is another SU(2) symmetry, whose generators are L=LP +a-
L

D P a-pP. =~°L. In this case the orbital angular momentum of the lower component is a
good quantum number, i.e., 22¢ = h? E(Z—i— 1)1, meaning that levels with the quantum numbers
(n',1+2,j=1-1/2) (n,l,j =1+1/2) are degenerate. In nuclei, n’ = n— 1, and it was precisely
the observation of the near-degeneracy of such levels in nuclei that led to the pseudospin concept.

3. Spin and pseudospin symmetries for Coulomb potentials

When the scalar and vector potentials are of Coulomb type, i.e., the sum and difference potentials
are of the form ¥ = (ax/r)hc, A = (aa)/r he, there are analytical solutions to the respective
Dirac equation. Details of the solutions can be found in refs. [9, 15]. There are two types of
solutions, called £ solutions, corresponding to fermion and anti-fermion solutions in the weak
coupling regime. If we expand those in terms of the aa and asx coefficients one gets, respectively,

Er. 202, 403, (k? — 2n|k)|) E; a?
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where n is the principal quantum number and « is defined above. One can see immediately that
for fermion (+) solutions one cannot have bound solutions in pseudospin symmetry conditions
(ay, — 0), but for spin symmetry (ap — 0) there are bound solutions. The opposite is
true for anti-fermion (—) solutions, that is, there are bound solutions in pseudospin symmetry
conditions but not in spin symmetry conditions. These results agree with what has been found
for nuclear mean-field Woods-Saxon-like potentials, both for nucleons [1] and for anti-nucleons
[10, 11, 12, 13]. These facts have been related to perturbative or non-perturbative nature of
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spin and pseudospin symmetries [2, 3, 5]. One may notice also from (8) and (9) that the energy
for the bound states in case of spin symmetry (fermion states) and pseudospin symmetry (anti-
fermion states) depends only on the principal quantum number. It is interesting to relate those
to the well-known non-relativistic solutions of hidrogenic atoms. For spin symmetry, one has

p2
D = (& =)y, (10)

where &' = [£/(2mc?) +1]€, ¥ = [€/(2mc?) + 1]X and € = E — mc?. Equation (10) is just the
Schroedinger equation for a hydrogenic atom of “atomic number” Z’ = —(£/(2mc?) + 1)ax/«a,
where « is the fine structure constant. The energy of this “atom” is just & = —mc?[£/(2mc?) +
1) 0 /n2, the same as E} . in (8) when ap = 0. A similar reasoning can be made for the 1
equation for pseudospin symmetry (ay; = 0). One will get then a Schroedinger equation for a
hydrogenic anti-atom of “atomic number” Z’ = —[£/(2mc?) + 1Jaa/a where £ = —E — mc?.
Notice that for the positive energy solutions we have ay, < 0 while for negative energy solutions
one has aa > 0. The fact that the energy only depends on n implies that there is an extra
degeneracy: levels with the same n and |k| < n are degenerate [15]. These features of Coulomb
potentials for spin and pseudospin symmetries have to do with a particular symmetry of the
Dirac equation with scalar and vector Coulomb potentials (see [9, 15]).

4. Realization of spin and pseudospin symmetries - final considerations

As referred above, for potentials like Woods-Saxon potentials or Coulomb potentials one cannot
realize pseudospin symmetry for positive energy states and spin symmetry for negative energy
states. This has been observed also by many authors for a great variety of scalar and vector
potentials in the Dirac equation, which have the common feature of going to zero at large
distances. However, for harmonic oscillator potentials one is able to find bound solutions
for both symmetries for positive and negative energy states [8]. Recently, it was shown that
this behaviour is shared with general radial potentials going to infinity at large distances [16],
establishing that the asymptotic behaviour of scalar and vector potentials in the Dirac equation
is what determines whether spin and pseudospin symmetry can be realized for bound relativistic
fermion (or anti-fermion) systems. The study of these relativistic symmetries is still very much
a active subject, and its application to physical systems other than nuclei seems promising.
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