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Abstract. This study deals with numerical solution of a 2D and 3D unsteady flows of a
compressible viscous fluid in 2D and 3D channel for low inlet airflow velocity. The unsteadiness
of the flow is caused by a prescribed periodic motion of a part of the channel wall, nearly
closing the channel during oscillations. The channels shape is a simplified geometry of the
glottal space in the human vocal tract. Goal is numerical simulation of flow in the channels
which involves attributes of real flow causing acoustic perturbations. The system of Navier-
Stokes equations closed with static pressure expression for ideal gas describes the unsteady
laminar flow of compressible viscous fluid. The numerical solution is implemented using the
finite volume method and the predictor-corrector MacCormack scheme with artificial viscosity
using a grid of quadrilateral cells. The unsteady grid of quadrilateral cells is considered in
the form of conservation laws using Arbitrary Lagrangian-Eulerian method. The application of
developed method for numerical simulations of flow fields in the 2D and 3D channels, acquired
from a developed program, are presented for inlet velocity u=4.12 m/s, inlet Reynolds number
Re=4481 and the wall motion frequency 100 Hz.

1. Introduction

A current challenging question is a mathematical and physical description of the mechanism
for transforming the airflow energy in human vocal tract (convergent channel) into the acoustic
energy representing the voice source in humans. The voice source signal travels from the glottis
to the mouth, exciting the acoustic supraglottal spaces, and becomes modified by acoustic
resonance properties of the vocal tract [1]. The airflow coming from the lungs causes self-
oscillations of the vocal folds, and the glottis completely closes in normal phonation regimes,
generating acoustic pressure fluctuations. In this study, the movement of the boundary channel
is known, harmonically opening and nearly closing in the narrowest cross-section of the channel,
making the investigation of the airflow field in the glottal region possible.

2. Governing equations

The system of Navier-Stokes equations has been used as mathematical model to describe the
unsteady laminar flow of the compressible viscous fluid in a domain. The system is expressed
in non-dimensional conservative form [2]:
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W = [p, pu, pv, pw, e]” is the vector of conservative variables where p denotes density, (u,v,w)
is velocity vector and e is the total energy per unit volume. F, G, H are the vectors of inviscid
fluxes and R, S, T are the vectors of viscous fluxes. The static pressure p in inviscid fluxes is
expressed by the state equation in the form

p:(n—l)[e—lp(uQ—i-vZ—i-wQ)}, (2)
2
where k = 1.4 is the ratio of specific heats.

The transformation to the non-dimensional form uses inflow parameters (marked with the
infinity subscript) as reference variables (dimensional variables are marked with the hat): the
speed of sound éo, = 343 ms™!, density poo = 1.225 kg m™3, temperature T = 293.15 K,
dynamic viscosity 7 = 18- 1076 Pa - s and a reference length L, =0.02 m.

General Reynolds number in (1) is computed from reference variables Re = ﬁooéooflr /oo

The non-dimensional dynamic viscosity in the dissipative terms is a function of temperature in
the form 7 = (T/Ts)%/*.

2.1. Computational domains and boundary conditions

The bounded computational domain D; used for the numerical solution of flow field in the 2D
channel is shown in Figure 1. The domain is symmetric channel, the shape of which is inspired
by the shape of the trachea (inlet part), vocal folds, false vocal folds and supraglottal spaces
(outlet part) in human vocal tract. The upper and the lower boundaries are the channel walls.
A part of the walls changes its shape between the points A and B according to given harmonic
function of time and axial coordinate. The gap width is the narrowest part of the channel (in
point C) and is oscillating between the minimum g,,;, = 0.4 mm and maximum g4, = 2.8 mm.
The computational domain Dy for the numerical solution of airflow in 3D is square channel
LxHxH=8x0.8x0.8 (160 mm x 16 mm x 16 mm).
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B L . H = 0.8 (16 mm), g = 0.08 (1.6
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The boundary conditions are considered in the following formulation:

(i) Upstream conditions: us, = %’:’7 flow rate at the inlet is constant H? - tso; poo = 1; Poo 1S
extrapolated from domain.

(ii) Downstream conditions: ps = 1/k; (p, pu, pv, pw) are extrapolated from domain.

(iii) Flow on the wall: (u,v,w) = (Uwall, Vwalls Wwair) - velocity of the channel walls and for
temperature T' = kp/p is % =0.

The general Reynolds number in (1) is multiply with non-dimensional value %H represents
kinematic viscosity scale and for computation of the real problem inlet Reynolds number
Rey = ﬁooéoo%‘:HLr/ﬁoo is used.

3. Numerical solution

The numerical solution uses finite volume method (FVM) in cell centered form on the grid
of quadrilateral cells, see e.g. [2]. In the time-changing domain, the integral form of FVM
is derived using Arbitrary Lagrangian-Eulerian (ALE) formulation. The ALE method defines
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homomorphic mapping of the reference domain D;_ at initial time ¢ = 0 to a domain D; at ¢t > 0
[3]. The explicit predictor-corrector MacCormack (MC) scheme in the domain with a moving
grid of quadrilateral cells is used. The scheme is 2nd order accurate in time and space [2]. The
higher partial derivatives of velocity and temperature in viscous terms are approximated using
dual volumes V, on each face ¢ (on edge in 2D) as shown in Figure 2. The last term used in the
MC scheme is the Jameson artificial dissipation AD(W; ;i)™ [4] for stability of computation.
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The grid of the 2D channel have successive refinement cells near the wall. The minimum cell
size in y - direction is Ay, =~ 1/v/Res to resolve capture boundary layer effects.

4. Numerical results

The numerical results were obtained (using a specifically developed program) for the following
input data: uniform inflow ratio velocity lc%f = 0.012 (i = 4.116 ms™!), Reynolds number
Reoo = 4481 and atmospheric pressure ps = 1/k (po = 102942 Pa) at the outlet.

The computation in 2D channel has been carried out in two stages. First, a numerical
solution is obtained, when the channel between points A and B has a rigid wall fixed in the
middle position of the gap width (see Fig. 1). Then this solution is used as the initial condition
for the unsteady simulation.

Figure 3 shows the unsteady flow fields computed in domain D;. Simulation is captured
in four time instants during one vibration period (in the fourth cycle of the wall oscillation).
The highest absolute maximum velocity ratio during one vibration period is % = 0.535
(Gimaz = 183.5 ms™!) at g=1.002 mm (opening phase). The application of the method for low
Mach number in 3D domain D5 is shown in Figure 4 with isolines of the velocity ratio.

5. Discussion and conclusions

The governing system (1) for flow of viscous compressible fluid based on Navier-Stokes equations
for laminar flow is tested in 2D and 3D domains. In unsteady simulations (2D domain D) was
possible to detect a “Coanda phenomenon” and large-scale vortices in the flow field patterns.
The direction of the jet is independent on the coarseness of mesh but depends on the geometry
of the channel, on the type of mesh in the domain, on the computational scheme [5] and on
the governing system of flow. A similar generation of large-scale vortices, vortex convection
and diffusion, jet flapping, and general flow patterns were experimentally obtained in physical
models of the vocal folds by using Particle Image Velocimetry method in [6]. The method will
be used for 3D simulation of unsteady flow in human vocal tract.
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Figure 3. The unsteady numerical Figure 4. The steady numerical solution of the
solution of the airflow in D - f = 100 airflow in Dy - rigid walls, z;f = 0.012, Rex =
Hz, goo =0.012, Reyo = 4481, po = 1/k, 4481, py = 1/k, 100 x 60 x 60 cells. Results
450 % 100 cells. Data computed during are mapped by iso-lines of velocity ratio and by
the fourth oscillation cycle. Results are streamlines.

mapped by iso-lines of velocity ratio and

by streamlines.
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