
Thermodynamic Properties and Phase Transitions of

Flexible-Semiflexible Homopolymers: A Multi-

Canonical Monte Carlo Simulation

Chahrazed Meddah1, Sid Ahmed Sabeur2, Amine Bouziane Hammou

and Hadjira Medeghri
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Abstract. We focus on the simulation of flexible and semiflexible polymer systems using
the multicanonical Monte Carlo method where we study their thermodynamic properties and
conformational behavior. First, we investigate transition signatures of flexible homopolymer
chains where monomers interact through a standard Lennard-Jones potential. In the second
time, we introduce a square well potential that produces helical structures. The idea behind
the use of those different potentials is to construct a phase diagram where we can characterize
the liquid, solid, crystalline and helical phases.

1. Introduction

Several studies have been dedicated to investigate the behavior of single polymers in different
models[1, 2, 3, 4, 5, 6, 7, 8] using different methods of computer simulation like molecular
dynamic and Monte Carlo method. In the present paper, we intend to consider the combination
of two models: flexible and semiflexible polymer chains by adding a directional potential[6] to
the Lennard-Jones potential. This study is carried out by means of multicanonical Monte Carlo
method[9].
The model and the simulation method are described in Sec II. The results are given in Sec III
and we conclude in Sec IV.

2. Model and simulation method

The model is described by an off lattice homopolymer chain that contains N identical monomers.
In the first time, we consider the flexible chain(the same model used in references[1, 2, 5]), where
all monomers interact pairwise via a truncated and shifted Lennard-Jones potential given by

ULJ(r) = 4ǫLJ

[

(σLJ
r

)12
−
(σLJ

r

)6
]

− ULJ (rc) (1)

ǫLJ is the energy scale, r denotes the relative distance between two monomers, rc = 2.5σLJ is

the cutoff distance, and σLJ = r02
−1

6 is the distance by which the potential is zero with the
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minimum potential distance r0 = 0.7. The interaction between nearest neighbors is given by the
finite extensible nonlinear elastic FENE potential

UFENE(r) = −
k

2
R2 ln

{

1−

[

r − r0
R

]2
}

(2)

k is the spring constant set to 40 and R = 0.3.
In the case of a flexible polymer chain, the total energy is given by

Eflexible
tot =

N
∑

i=1

N
∑

j=i+1

ULJ(rij) +
N−1
∑

i=1

UFENE(rii+1) (3)

In the second time, we add a directional potential[6, 11] to study helix formation in wormlike
polymer chain[12]. The interaction between monomers labeled i and j (i, j = 1, . . . N, i 6= j) is
given by

Uhelix
ij =







0 for σhelix ≤ rij
−ǫhelix[ûi · r̂ij ]

6 − ǫhelix[ûj · r̂ij ]
6 for d ≤ rij ≤ σhelix

∞ for 0 ≤ rij ≤ d
(4)

where ûi = (~ri − ~ri−1)(~ri+1 − ~ri)/sin(θ), θ is the fixed bond angle and r̂ij = (~ri − ~rj)/|~ri − ~rj |.
Here d is the excluded volume diameter and σhelix is the attractive force range. This quantities
are set respectively to 3/2a,

√

45/8a, a is the fixed bond length set to 0.7 and θ = π/3. ǫhelix
denotes the energy scale. The total energy of semiflexible polymer chains producing helical
structures is given by

Ehelix
tot =

N−1
∑

i=1

N−2
∑

j=i+2

Uhelix
ij (5)

Finally, when we combine the two potential models described above, the total energy of the
chain will be

Etot(ǫLJ , ǫhelix) = Ehelix
tot + Eflexible

tot (6)

Our study is different from the other previous works[6, 11] since we are combining the two
potential models and are varying the energy scales ǫhelix and ǫLJ which allows us to characterize
the different phases. A new parameter, the ratio ǫhelix/ǫLJ is also used to control the simulation.
To visit all possible conformations in energy space we use the multicanonical Monte Carlo
method[9, 10] where the Boltzmann distribution Pcan(E) ∝ g(E) exp(−βE) is deformed
artificially in a way to produce a flat histogram and perform a random walk. Thereby, the
canonical probability is multiplied by a weight factors W (E) which are unknown a priori and
have to be determined iteratively. The multicanonical energy distribution will be

Pmuca(E) ∝ g(E) exp(−βE)W (E) ∼ H(E) = constant (7)

g(E) is the density of states and β is the inverse temperature, β = 1/kBT . kB is the Boltzmann
constant. The iterative procedure starts by setting the weight factors W 0(E) for all energies
to unity and continued until the multicanonical histogram H(E) is flat. In the first run, we
perform a simulation at infinite temperature under canonical distribution. Each simulation n,
(n = 0, 1, 2, . . .) which is performed with the estimate weights Wn(E) yielding an estimate

histogram Hn(E). The estimation Wn+1(E) is given by Wn+1(E) = Wn(E)
Hn(E) . After having

estimated the appropriate weights W (E), a long production run is performed to determine
different statistical quantities which can be obtained by the following equation
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〈A〉T =

∑

E AEW
−1(E)e−βE

∑

E W−1(E)e−βE
(8)

The specific heat and structural quantities such as the square radius of gyration, the local and
global helical order parameters H2 and H4 are calculated to characterize transition signatures
and to specify the polymer structures.

R2
g =

1

N

N
∑

i=1

(~ri − ~rcm)2 (9)

where ~rcm is the center of mass vector.

H2 =
1

N − 3

N−1
∑

i=2

ûi · ûi+1 (10)

H4 =

(

1

N − 2

N−1
∑

i=2

ûi

)2

(11)

3. Simulation results

In the following, we present the results of the multicanonical study in the temperature range
T ∈ [0, 5]. 300 iterations are performed with 106 updates at each iteration to estimate the weight
factors and 108 updates in the production run for polymer chain length of N = 19 monomers.
The results presented below are obtained by averaging 10 simulations starting with different
random seeds. The error bars of the energetic and structural quantities and their fluctuations
turn out to be smaller than the data symbols used in the plots.
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Figure 1. The multicanonical histogram
and logarithm of the density of states
versus energy per monomer obtained for
polymer chain with N=19 and ǫLJ ≫ ǫhelix.
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Figure 2. Specific heat versus tempera-
ture for chain length N = 19 in both cases
ǫLJ ≫ ǫhelix and ǫhelix ≫ ǫLJ.

In figure 1, we plot the histogram of the visited energies and the logarithm of the density
of states when ǫLJ ≫ ǫhelix. Various types of displacement are used to generate conformations
during the simulation. The pivot move[13] is used when ǫhelix ≫ ǫLJ, and in the other case
addition to the pivot move, shift monomer, reptation, crankshaft and end-bridging moves[14] are
all combined. The curves of specific heat in the two cases are plotted in figure 2. The transition is
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Figure 3. Radius of gyration of the chain
of 19 monomers for ǫhelix ≫ ǫLJ and ǫLJ ≫
ǫhelix.
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Figure 4. Structural parameters H2 and
H4 versus temperature for chain length
N = 19.

observed when ǫLJ ≫ ǫhelix at T ≈ 0.2 and at T ≈ 0.8 for ǫhelix ≫ ǫLJ. Structural parameters are
shown in figure 3 and 4. Snapshot of conformations obtained during the simulation representing
different states are given in figure 5.
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Figure 5. Representative configurations obtained during the simulation. (I):Random coil
observed around T ≈ 5. (II) and (III): Globular chains obtained for T ≈ 0.6 and T ≈ 0.01 when
ǫLJ ≫ ǫhelix. (IV): Perfect helix appears for ǫhelix ≫ ǫLJ at T ≈ 0.08.

4. Conclusion

The aim of this paper is to classify flexible and semiflexible polymer chains through the study
of their thermodynamic and structural properties by combining two different potential models.
The preliminary results presented above are limited to two cases ǫhelix ≫ ǫLJ and ǫLJ ≫ ǫhelix.
At low temperatures, we have obtained helical conformations for the first case. The second
case is dominated by the formation of globular structures. The behavior of the polymer chain
at intermediate values of energy scales will be investigated in a future work where the phase
diagram will be constructed.

Acknowledgments

We would like to thank Professor Michael Bachmann for helpful discussions.

References
[1] S. Schnabel, M. Bachmann and W. Janke 2009 J. Chem. Phys. 131 124904
[2] S. Schnabel, W. Janke, and M. Bachmann 2011 J. Comput. Phys. 230 4454
[3] S. Schnabel, T. Vogel, M. Bachmann and W. Janke 2009 Chem. Phys. Lett B 476 201
[4] F. Wang and D. P. Landau 2001 Phys. Rev. E 64 056101
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