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Abstract. A Finsler geometric surface model for membranes is studied by using the Monte
Carlo simulation technique on connection-fixed triangle lattices with sphere topology. An in-
plane three-dimensional unit vector σ is assumed to be the in-plane tilt variable of the surface.
The interaction with σ is described by the XY-model Hamiltonian. Since this variable σ is
considered as a vector field on the surface, a Finsler metric is defined by using σ. We find
that the model has three different phases. They change from the para-magnetic phase to the
ferromagnetic and to the glass phases when the strength of the XY interaction increases. Both
the para-magnetic and the glass phases are characterized by random configuration of σ; the
variable σ randomly fluctuates in the para-magnetic phase while it is randomly frozen in the
glass phase. We also find that the surface becomes spherical in both phases. On the contrary, in
the ferro-magnetic phase the surface shape becomes tubular or discotic due to the anisotropic
bending rigidity and surface tension coefficient, which are dynamically generated by ordered
configurations of σ.

1. Introduction
Anisotropic shape can be seen in biological membranes such as liposomes and vesicles [1] or in
liquid crystal elastomers (LCEs) membranes [2, 3]. In those membranes, the strength of the
surface force such as the surface tension γ and bending rigidity κ is expected to be dependent
on whether these molecules are aligned or not. Indeed, the surface anisotropy can be obtained
by modifying the bending rigidity κ to be dependent on the internal direction of surface in
the Ginzburg-Landau or Helfrich-Polyakov (HP) model for membranes [4, 5]. However, the
modification of κ in those models by hand gives only a constant κ over the surface although it
should depend on the direction.

Another technique to make κ anisotropic is to assume a Finsler metric on the surface [6, 7].
In this approach, κ depends not only on the direction but also on the position on the surface.
Since the Finsler geometric model is defined in a continuous form, its treatment such as the
discretization is not always uniquely determined. In the anisotropic model of Ref. [6], we
assumed that (i) the tilt variable σ belongs to S2: unit sphere, and its tangential components
are used as a vector field to define the Finsler metric, (ii) the Heisenberg spin model Hamiltonian
S0 is assumed for σ, (iii) the Finsler metric gFab is constructed by deforming the Euclidean metric
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δab, (iv) g
F
ab is assumed for both the bond potential S1 and the bending energy S2, while δab is

assumed for S0.
In this presentation, we show the results obtained for the model, which is different from the

one in [6]. It is defined as follows: (i) σ ∈ S1: σ has the unit length, it belongs to the tangential
plane and its values are assigned to the vertices, (ii) the XY model Hamiltonian S0 is assumed for
σ, (iii) gFab is constructed by modifying the induced metric gab=∂aX

µ∂bX
µ, (iv) gFab is assumed

not only for S1 and S2 but also for S0.

2. Model
The model is defined on the triangulated surface in R3, which is characterized by the three
numbers (N,NB, NT ), which are the total numbers of vertices, bonds and triangles.
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Figure 1. (a) Edge vectors ℓ⃗i and internal angles ϕi of a triangle in R3, (b) a triangle 123 and
the three neighboring triangles, and (c) the parameters vij defined by Eq. (4).

The Hamiltonian is given by

S(X,σ) = λS0 + S1 + κS2, (1)

where S0 is an energy for the directors (or tilts) σi. The σi has values in S1, which is the unit
circle on the tangential plane at the vertex i. The tangential plane is defined such that the unit
normal vector ñi at the vertex i is given by ñi =Ni/|Ni|, Ni =

∑
j njaj , where nj and aj are

the unit normal vector and the area of the triangle j linked to the vertex i.
The internal energy S0, the Gaussian bond potential S1 and the bending energy S2 are defined

as follows:
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S2∆ = κ1ℓ
2
1(1− n0 · n1) + κ2ℓ
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2(1− n0 · n2) + κ3ℓ
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where 2 cos2 ϕ3 in S1∆ can also be written as 2 cos2 ϕ3 = (ℓ21+ℓ22−ℓ23)/ℓ1ℓ2. The symbols
ℓi(i=1, 2, 3) are the edge lengths of ∆, and ni(i=0, 1, 2, 3) denote the unit normal vectors of
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triangles (Fig. 1(b)). The symbol a∆ is the area of triangle ∆ defined by a∆=(1/2)ℓ1ℓ2 sinϕ3=
(1/2)ℓ3ℓ1 sinϕ2=(1/2)ℓ2ℓ3 sinϕ1. The symbol

∑
∆ denotes the sum over all ∆. The coefficients

γi and κi in Eq. (2) are defined by
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The parameters vij are given by

vij = 1 + [σij ] , σij = Nv |σ⃗i · tij | , (4)

where [x] represents Max [n ∈ Z|n ≤ x], Nv = 100, and tij is the unit tangential
vector from the vertex i to the vertex j. The partition function Z is given by
Z(λ, κ) =

∑
σ

∫ ′∏N
i=1 dXi exp [−S(X,σ)] , where

∫ ′∏N
i=1 dXi is the multiple three-dimensional

integrations, that are performed by fixing the center of mass of the surface to the origin of R3,
and

∑
σ denotes the sum over tilt variables.

The assumed Finsler metric gFab is given by gFab =

(
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)
, which

reduces to the discrete induced metric if vij=1 for all ij. The discrete Hamiltonians S0, S1 and
S2 in Eq. (2) with the coefficients in Eq. (3) are obtained from the continuous Hamiltonians
just like in the model of Ref. [6].

3. Monte Carlo results

(a)                         (b)                   (c) (d)

Figure 2. Snapshots for (a) λ= 0.2 (sphere), (b) λ= 1.5 (tube), (c) λ= 3 (disk), (d) λ= 17
(glass). N=5762, b=300, and Nv=100. The view point of the lower snapshot is rotated about
π/4 around the vertical axis of the upper one. Red brushes denote the in-plane variable σ.

We show snapshots for λ = 0.2, λ = 1.5, λ = 3, and λ = 17 (Figs.2(a)-2(d)), where
the first one belongs to the high temperature phase and the remaining three belong to the
low temperature phase. The random configurations in (a) and (d) correspond to the high
temperature and the glass configurations, respectively. The magnetization M/N defined
by M/N = (1/N) |

∑
i σi| = (1/N) |(

∑
i σ

x
i ,
∑

i σ
y
i ,
∑

i σ
z
i )| reflects whether the spin variables

spatially align or not (Fig. 3(a)). To the contrary, the following [M ]/N can reflect whether the
spins timely align or not (Fig. 3(b)):
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Figure 3. (a) M/N vs. λ, (b) [M ]/N vs. λ, (c) S0/NT vs. λ, and (d) Li(i=1, 2, 3) vs. λ, where
L1 is the maximal linear extension and L2, L3 are diameters of the surface section perpendicular
to the line from which L1 is obtained.

where ns=
∑

n 1 and (1/ns)
∑

n is the time series average of samples {σi(n)}, which is obtained
at the vertex i with the Monte Carlo (MC) time n. The magnetization M/N is numerically
obtained by performing the lattice average firstly and the time average finally, while [M ]/N is
obtained with the time average firstly and with the lattice average finally. We expect M/N→0
if σi is spatially random, while [M ]/N → 0 if σi is timely random. Thus, the glass phase is
characterized by M/N→0 and [M ]/N→1. The glass phase is expected for λ≥15 (Figs. 3(a),
(b)). In the high temperature phase, we see M/N → 0 and [M ]/N → 0, which implies that σ
is random both spatially and timely. In the low temperature phase for λ≥ 1.5, [M ]/N → 1 is
expected because σ is timely unchanged or aligned whenever the surface is in the tube or disk
configuration, while M/N→1 (M/N→0) is expected in the tube (disk) configuration.

At the phase boundary between the glass and disk/tube phases, S0/NT and the maximal
(minimal) linear extension L1 (L3) appear to change discontinuously, where L1 is the maximal
surface length along the line going through the center of surface, while L2 is the maximal
diameter of the sectional ellipse which is perpendicular to the line corresponding to L1, and L3

is the ellipse diameter at the line vertical to both of the lines corresponding to L1 and L2. We
see L1≃L2≃L3 in the glass phase (Fig. 3(d)), which implies that the surface is spherical in this
phase. The surface shape in the disk/tube phase seems to be dependent on the initial condition
in contrast to the model in Ref. [6].

The glass phase of the model is expected to be not stable but quasi-stable. Indeed, the mean
field analysis of the Finsler XY model defined by S=λS0 with ℓi=1 on the regular square lattice
indicates that the free energy has a quasi-stable state corresponding to the glass phase. This will
be reported elsewhere. The author (HK) acknowledges Hideo Sekino in Toyohashi University of
Technology for comments.
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