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Abstract. Very recently in the work ”Simple Iterative Method for Solving Problems
for Plates with Partial Internal Supports, Journal of Engineering Mathematics , DOI:
10.1007/s10665-013-9652-7 (in press)”, we proposed a numerical method for solving some
problems of plates on one and two line partial internal supports (LPIS). In the essence they are
problems with strongly mixed boundary conditions for biharmonic equation. Using this method
we reduced the problems to a sequence of boundary value problems for the Poisson equation
with weakly mixed boundary conditions, which are easily solved numerically. The advantages
of the method over other ones were shown.

In this paper we apply the method to plates on internal supports of more complicated
configurations. Namely, we consider the case of three LPIS and the case of the cross support.
The convergence of the method is established theoretically and its efficiency is confirmed on
numerical experiments.

1. Introduction

In this paper we consider problems of rectangular plates with three line partial internal supports
(LPIS) and a cross internal support. The geometry of the problems is depicted in Fig. 1 (case
of three LPIS) and Fig. 2 (case of a cross support). Suppose that the plates are subjected to a
uniformly distributed load (q), their bottom and top edges are clamped, while the left and right
edges are simply supported. Then due to the two-fold symmetry the problems are reduced to
the solution of the biharmonic equation ∆2u = f for the deflection u(x, y) in a quadrant of the
plates, where f = q/D, D is the flexural rigidity of the plates, under corresponding boundary
conditions.

Essentially, they are strongly mixed boundary value problems for the biharmonic equation in
the sense that there is one or more points of change of types of boundary conditions in edges of
the rectangle. Therefore, they belong to the class of the problems with boundary singularities. A
brief review of the methods concerning these problems is given in our recent work [1], where we
proposed an iterative method, combining the reduction of the equation order [2], [3] and domain
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decomposition [4] for the problems of plates on one and on two LPIS. It should be noticed that
the motivation for our research was the paper of Sompornjaroensuk and Kiattikomol [6]. The
present work is a further development of the method proposed in [1] to the problems of plates on
three LPIS and on a cross support. The convergence of the method is established theoretically
and verified on numerical examples.

2. Iterative method for solving the problem for plates with three LPIS

2.1. Description of the method

We consider the problem with boundary conditions in general form

∆2u = f in Ω,

u = g0 on SB ∪ SD ∪ SF ∪ SG,
∂u

∂ν
= g1 on Γ \ SG,

∆u = g2 on SG,
∂

∂ν
∆u = g3 on SA ∪ SC ∪ SE,

(1)
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Figure 3. Domain decomposition
for the problem with three LPIS
considered in a quadrant of plate

where Ω is the rectangle (0, a)× (0, b), SA, SB , SC , SD, SE , SF and SG are parts of the boundary
Γ = ∂Ω as shown in Fig. 3, ∆ is the Laplace operator, f and gi (i = 0, 3) are functions given in
Ω and on parts of the boundary Γ, respectively.

In the case if all boundary functions gi = 0 (i = 0, 3) the problem models the bending of a
quardrant of a rectangular plate on three LPIS.
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For conciseness we put Γ1 = SB ∪ SD ∪ SF . Next we set ∆u = v in Ω, v |Γ1
= ϕ.

For solving the problem we divide the domain Ω into three subdomains Ω1, Ω2, Ω3 and Ω4 by
the lines x = e1, x = e2 and x = e3, and denote the interfaces of these subdomains by SI1 , SI2

and SI3 as depicted in Fig. 3.
Consider the following combined iterative method with the idea of simultaneous iterative

update of ϕ on Γ1 and ξi = ∂v2/∂ν2, ηi = ∂u2/∂ν2 on the interfaces SIi (i = 1, 2), ξ3 = ∂v4/∂ν4,
η3 = ∂u4/∂ν4 on the interface SI3 . Here and afterwards we denote ui = u|Ωi

, vi = v|Ωi
and νi

denotes the outward normal to the boundary of Ωi (i = 1, ..., 4).

Step 1. Given ϕ(0) = 0 on SB ∪ SD ∪ SF ; ξ
(0)
i

= 0, η
(0)
i

= 0 on SIi, (i = 1, 2, 3).

Step 2. Knowing ϕ(k), ξ
(k)
i

, η
(k)
i

, (k = 0, 1, ...), (i = 1, 2, 3) solve consecutively problems for v
(k)
2

and u
(k)
2 in Ω2, problems for v

(k)
4 and u

(k)
4 in Ω4, problems for v

(k)
1 and u

(k)
1 in Ω1 and problems

for v
(k)
3 and u

(k)
3 in Ω3:


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

∆v
(k)
2 = f in Ω2,

v
(k)
2 = ϕ(k) on SB ∪ SF2,

∂v
(k)
2

∂ν2
= ξ

(k)
i

on SIi , (i = 1, 2),


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
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
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



∆u
(k)
2 = v

(k)
2 in Ω2,

u
(k)
2 = g0 on SB ∪ SF2

∂u
(k)
2

∂ν2
= η

(k)
i

on SIi, (i = 1, 2),
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(k)
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(k)
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(k)
3 on SI3 ,
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(k)
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∂ν4
= g1 on SE,
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(5)
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Step 3. Compute the new approximation

ξ
(k+1)
1 = (1− θ)ξ

(k)
1 − θ

∂v
(k)
1

∂ν1
, η

(k+1)
1 = (1− θ)η

(k)
1 − θ

∂u
(k)
1

∂ν1
on SI1

ξ
(k+1)
2 = (1− θ)ξ

(k)
2 − θ

∂v
(k)
3

∂ν3
, η

(k+1)
2 = (1− θ)η

(k)
2 − θ

∂u
(k)
3

∂ν3
on SI2

ξ
(k+1)
3 = (1− θ)ξ

(k)
3 − θ

∂v
(k)
3

∂ν3
, η

(k+1)
3 = (1− θ)η

(k)
3 − θ

∂u
(k)
3

∂ν3
on SI3

ϕ(k+1) = ϕ(k) − τ
(∂u

(k)
i

∂νi
− g1

)

on Γ1,

(6)

where θ, τ are iterative parameters to be chosen for the fast convergence of the iterative method.
The convergence of the above iterative method is proved in the same way as for the cases of

one and of two LPIS in [1].

2.2. Numerical example

For numerical realization of the above iterative method each subdomain is covered by an uniform
grid with the same number of nodes in the y−direction. On these grids the mixed BVPs for the
Poisson equation (2)-(5) are discretized by difference schemes of second order approximation.
After that the obtained systems of difference equations are solved by the method of complete
reduction [5, Chapt. 3]. For computing the normal derivatives in (6) we also use formulas of
second order error. We perform iterative process (2)-(6) until ‖ u(k+1) − u(k) ‖∞≤ ε, where ε is

a given accuracy taken of the same order as O(ĥ2), ĥ being the step size of the grid.
The results of testing the convergence of the method on some exact solutions u(x, y) with the
corresponding boundary conditions and the right side function for the grids of 65× 65 nodes on
each subdomain show that for the values θ = 0.95, τ = 0.55 and some different combinations
of e1, e2, e3 after 40 − 60 iterations the deviation of the approximate solution from the exact
solution is less than 10−4. Therefore, in sequel we use these values of θ and τ .

Now, we apply the proposed iterative method to the problem of the rectangular plates
depicted in Fig. 3, where u(x, y) is the deflection function, f = q/D, D being flexural rigidity
of the plate which is expressed as D = Eh3/12(1−ν2), while h is the plate thickness, and ν and
E are the Poisson’s ratio and the Young’s modulus of the plate, respectively.

The iterative process (2)-(6) for solving the problem for plates with three partial internal
supports in domain Ω = [0, π/2] × [0, π/2] on the grid 65 × 65 nodes for each subdomain with
the given accuracy 10−4, h = 0.5, q = 0.3, the iteration parameters θ = 0.95, τ = 0.55 converges
after 48 iterations. Fig. 4 presents the normalized deflection surfaces of a quadrant and of the
whole plate for e1/π = 0.15, e2/π = 0.20, e3/π = 0.45.

3. Problem for a plate on a cross internal support

3.1. Description of the iterative method

Now we consider the following problem

∆2u = f in Ω,

u = g0 on SB ∪ SC ∪ SE,
∂u

∂ν
= g1 on SA ∪ SB ∪ SC ∪ SD ∪ SE,

∆u = g2 on SF ,
∂

∂ν
∆u = g3 on SA ∪ SD,

(7)

where Ω is the rectangle (0, a) × (0, b), SA, SB , SC , SD, SE and SF are parts of the boundary
Γ = ∂Ω as shown in Fig. 5.
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Figure 4. The surfaces of deflection of a quadrant (left) and of the whole plate (right)
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In the case if all boundary functions gi = 0 (i = 0, 3) the problem models the bending of a
quardrant of a rectangular plate.

For solving the problem we divide the domain Ω into three subdomains Ω1, Ω2 and Ω3 by the
lines x = e1 and y = e2, and denote the interfaces of these subdomains by SI1 , SI2 and SI3 as
depicted in Fig. 5. As usual, we denote ui = u|Ωi

, vi = v|Ωi
and νi denotes the outward normal

to the boundary of Ωi (i = 1, 2, 3)
Consider the following combined iterative method for the problem (7):

Step 1. Given ϕ(0) = 0 on SB ∪ SC ∪ SE ; ξ
(0)
i

= 0, η
(0)
i

= 0 on SIi , (i = 1, 2, 3).

Step 2. Knowing ϕ(k), ξ
(k)
i

, η
(k)
i

, (k = 0, 1, ...), (i = 1, 2, 3) solve consecutively problems for v
(k)
1

and u
(k)
1 in Ω1, problems for v

(k)
2 and u

(k)
2 in Ω2, and problems for v

(k)
3 and u

(k)
3 in Ω3:


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= ξ
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on SIi , (i = 1, 2),
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on SIi, (i = 1, 2),

(8)
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Step 3. Compute the new approximation
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(11)

where θ1, θ2 and τ are iterative parameters to be chosen for guaranteeing the convergence of the
iterative process.

3.2. Numerical example

As for the problem of plate on three LPIS we verify the convergence of the discrete analogy
of the iterative process (8)-(11) on some exact solutions for some sizes of the cross support.
Performed experments show that the convergence rate depends on the sizes (e1, e2) and
the values of the iteration parameters θ1, θ2 and τ . In application to the problem when
e1/π = 0.25, e2/(π/2) = 0.4 with the iterative parameters θ1 = 0.75, θ2 = 0.9 and τ = 0.55
for reaching the accuracy 10−4 the number of iterations needed is 46. The surfaces of deflection
of a quadrant and of the whole plate in this case are depicted in Fig. 6.

4. Concluding remarks

In this paper we developed an iterative method for solving the problems for a plate having
three line partial internal supports and for a plate having a cross internal support. The idea of
the method is to reduce the problems to a sequence of problems for the Poisson equation with
strongly mixed boundary conditions, which can be efficiently solved by a domain decomposition
method. The convergence of the method is proved and tested on examples. The computations
by the method are simple due to the use of our software for solving the Poisson equation with
different weakly mixed boundary conditions. The method can be applied to the problems of
plates on internal supports of more complex configurations such as a system of more than three
LPIS, a system of two symmetric cross supports, a system of a cross and line internal supports
or a system of parallel internal line supports.
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Figure 6. The surfaces of deflection of a quadrant (left) and of the whole plate (right) for
e1/π = 0.25, e2/π = 0.40
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