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Abstract. The singly-excited states of He and He-like atomic ions in the manifold of the
n = 3 principal shell have been studied replying on the full configuration interaction wave
function focusing on the origin of the first Hund rule. The probability density distributions
of the singlet-triplet pairs of states for the three orbital configurations of (1s)(3s), (1s)(3p),
and (1s)(3d) have been examined in detail in the internal space (r1, r2, φ−). The structure of
the genuine and conjugate Fermi holes for the (1s)(3s) and (1s)(3p) configurations has shown
similar characteristics to those for the respective (1s)(2s) and (1s)(2p) configurations examined
in an earlier study. A significantly smaller size of the genuine and conjugate Fermi holes for the
(1s)(3d) singlet-triplet pair of states rationalizes the much smaller singlet-triplet energy gap of
this pair than those for the (1s)(3s) and (1s)(3p) pairs of states.

1. Introduction
Hund’s rule [1, 2, 3] is one of the most fundamental rules in atomic physics, that predicts the
ordering of energy levels possessing the same orbital configuration yet different spin and orbital
angular momentum quantum numbers. The first Hund rule, concerning the spin multiplicity,
is particularly universally valid not only for atomic systems but for molecules [4] and artificial
atoms [5, 6]. Despite the past long standing debates [7, 8, 9, 10, 11] focusing mainly on the
relative importance of the energy components, such as the electron-nuclear attraction energy vs.
the electron-electron repulsion energy, the search for its origin persists primary due to a lack of
precise knowledge of the electronic structure of atoms for different spin states.

We have recently shown that for the singly-excited S and P states arising from the (1s)(2s)
and (1s)(2p) configurations in the He and He-like atomic ions the origin of Hund’s rule can be
rationalized on the basis of the structure of the so-called genuine and conjugate Fermi holes
[12, 13]. In the present study we have extended our analysis for different angular momentum
states of singly-excited manifold of He-like systems and thus presented a unified understanding
for the origin of this historical rule.

2. Theoretical model and computational methodology
In our previous study the so-called two-dimensional Helium model has been used in which the
spatial degrees of freedom of the two electrons are confined to a two-dimensional xy plane with
the nucleus place at the origin. The Hamiltonian of this two-dimensional He-like systems reads
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in atomic units as

HZ = −1
2

2∑
i=1

∇2
i −

2∑
i=1

Zn

|r⃗i| +
1

|r⃗1 − r⃗2| , (1)

where r⃗i = (xi, yi) [= ri(cos φi, sinφi)] for i = 1, 2, while Zn represents the nuclear charge. Our
previous study showed that this two-dimensional helium model reproduces all the characteristic
features of the energy spectrum of the real 3D helium atom [12]. By reducing the dimensionality
and thus the number of the degrees of freedom the internal part of the wave functions can be
easily visualised. This allows an unambiguous manifestation of the origin of the Hund rule.
By introducing a scaling for the coordinates with the nuclear charge Zn such as s⃗i≡Znr⃗i the
Hamiltonian becomes

HZ/Z2
n = −1

2

2∑
i=1

∇2
s,i −

2∑
i=1

1
|s⃗i| +

1
Zn

1
|s⃗1 − s⃗2| . (2)

This scaled Hamiltonian indicates that the one-electron part, namely, the kinetic energy plus the
electron-nuclear attraction energy, is independent of Zn while not the electron-electron repulsion
energy. The factor 1

Zn
in front of the last term in the right-hand side of Eq. (2) guarantees

that the electron-electron interaction becomes smaller relative to the one-electron energy as Zn

decreases. Two-dimensional Cartesian Gaussian-type functions of the form

χa⃗,ζ(r⃗) = xaxyay exp[−ζ(x2 + y2)] (3)

have been used to expand the one-electron orbitals for the scaled Hamiltonian (2). A detailed
description of the basis set may be found elsewhere [13].

The energy and wave function of the Hamiltonian (2) has been obtained by diagonalising
the full configuration interaction (full CI) matrix. The internal space of the two-electron He-
like systems may be defined by the three variables (r1, r2, φ−) [12, 13] where ri≡|r⃗i| for i=1,2
and φ−≡(φ1 − φ2)/2. The angle variable complementary to φ− defined by φ+≡(φ1 + φ2)/2 is
associated with the total angular momentum L. The probability density distribution in the
internal space ρ(r1, r2, φ−) is thus obtained from the full CI wave function Ψ(r1, φ1, r2, φ2) by
integrating the square norm of Ψ with the φ+ variable. The detail of the procedure may be
found in an earlier paper [12].

3. Fermi and conjugate Fermi holes
The genuine and conjugate Fermi holes are defined by the difference between the probability
density distributions of the singlet state and of the corresponding triplet state comprising the
Hund’s pair of states in the limit of Zn = ∞ [12, 13]. By considering this large limit of the nuclear
charge they are uniquely defined by the pair of zeroth-order one-electron orbitals that are the
eigenfunctions of the one-electron part of the Hamiltonian (2). It is noted that in this large Zn

limit the singlet and triplet wave functions give exactly the same electron density distributions.
Therefore, their difference in the probability density distributions in the internal space is caused
solely by the difference in the symmetry properties of their spatial wave functions with respect
to exchanging the spatial coordinates of electron 1 and 2, i.e., symmetric and antisymmetric for
the singlet and triplet wave functions, respectively. The difference in the topological structure
between the genuine and conjugate Fermi holes allows us an insightful visualization of the
variation of the singlet and triplet states, and thus the origin of the lower energy of the triplet
state than the counter part singlet state.

The genuine and Fermi holes for the (1s)(3s) and (1s)(3p) configurations have been plotted
in Figs. 1 (a) and (b), respectively. The blue and red surfaces displayed in this figure represent,
respectively, the regions where the probability density of the singlet state is larger than that of
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Figure 1. The genuine and conjugate Fermi
holes in the internal space (r1, r2, φ−) for the
(1s)(3s) and (1s)(3p) singlet-triplet pairs of
states [(a) and (b), respectively] of He-like
systems. The X, Y , and Z axes represent
r1, r2, and φ−, respectively. The probability
density at the displayed surface is 5.0×10−4.

the triplet state, and vice versa. The density at the surfaces is 5.0×10−4. Inside the blue surfaces
the probability density of the triplet state is much smaller than that of the corresponding singlet
state. Therefore, these regions represent the so-called standard Fermi holes. On the other hand,
inside the red surfaces the probability density of the singlet state in turn is much smaller than
the triplet state, that have been defined and called as the conjugate Fermi holes in earlier
studies [12, 13]. The existence of these conjugate Fermi holes as well as the genuine ones can be
rationalized as follows.

The spatial part of the wave functions of the singlet-triplet pair of states for the (1s)(nl)
configuration in the limit of Zn→∞ can be described as

Ψ±
nl =

1√
2
[ψ1s(r⃗1)ψnl(r⃗2) ± ψnl(r⃗1)ψ1s(r⃗2)], (4)

where the symmetric and antisymmetric wave functions, Ψ+
nl and Ψ−

nl, represent, respectively,
the singlet and triplet states. By choosing r⃗1 = r⃗2 for the triplet Ψ−

nl wave function, the first
and second terms in the bracket of the right hand side of Eq. (4) cancel with each other. This
results in the well-known Fermi holes as indicated by the blue regions in Fig. 1. In the case of
the singlet Ψ+

nl wave function this cancellation doesn’t occur for r⃗1 = r⃗2 because of its symmetric
nature. However, another type of ’cancellation’ can occur for the singlet wave function: As is
well known the ψnl orbital has at least one node [radial node(s) for n > 2 and/or angular node(s)
for l > 0] where the amplitude becomes zero. Therefore, this orbital changes its sign when the
argument crosses the node point. By arbitrary choosing two points, designated by r⃗A and r⃗B, so
that they cross this node point and putting them into the singlet wave function as Ψ+

nl(r⃗A, r⃗B),
the first and second terms in the bracket of the right hand side of Eq. (4) cancel with each
other since ψnl(r⃗A) and ψnl(r⃗B) have different signs. In the case of the triplet Ψ+

nl wave function
this cancellation doesn’t occur since the minus sign in front of the second term compensates
the change of the sign in the ψnl orbital. Therefore, in the vicinity of (r⃗A, r⃗B) the triplet wave
functions should have much larger probability density than the singlet wave functions. This
guarantees the existence of the conjugate Fermi holes as indicated by the red surfaces in Fig. 1.

The genuine and conjugate Fermi holes displayed in Fig. 1 look quite similar to those for
the (1s)(2s) and (1s)(2p) configurations examined in detail in earlier studies [12, 13]. The
main difference between the two configurations, (1s)(2s) and (1s)(3s), and between (1s)(2p)
and (1s)(3p) is that the outer orbitals, (3s) and (3p), in the higher principle shell of n = 3
have an additional radial node than the corresponding (2s) and (2p) orbitals in the lower shell.
The reason for the topological similarity in their genuine and conjugate holes in spite of the
existence of this additional radial node is that genuine and conjugate Fermi holes exist in the
regions where the two orbitals, ψ1s and ψnl, constituting the wave function of Eq. (4) spatially
overlap with each other. Therefore, since the node point of this additional node in the higher n
shell is far away from the small r region where the maximum density of the tight (1s) orbital
resides, it does hardly contribute to the formation of genuine and conjugate Fermi holes. Thanks
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to the similarity in the structure of the genuine and conjugate Fermi holes between the (1s)(2s)
and (1s)(3s) configurations and between (1s)(2p) and (1s)(3p), the mechanism of the origin of
the first Hund rule operating in the (1s)(2s) and (1s)(2p) configurations described in detail in
earlier papers [12, 13] can be applied to the present (1s)(3s) and (1s)(3p) cases.
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Figure 2. The genuine and conjugate Fermi holes in the
internal space (r1, r2, φ−) for the (1s)(3d) singlet-triplet pair
of states of He-like systems. The probability density at the
displayed surface is 5.0×10−5. See the caption to Fig. 1 for
other remarks.

The genuine and conjugate Fermi holes for the (1s)(3d) configuration have been displayed in
Fig. 2. It is noted that the density at the displayed surface in this figure is 5.0×10−5, 10 times
smaller than that for Fig. 1. Therefore, the integrated probability density in the genuine and
conjugate holes for this (1s)(3d) configuration is much smaller than those for the (1s)(3s) and
(1s)(3p) configurations. Since the density in the genuine and conjugate holes determines the
difference between the singlet and triplet states, the significantly smaller density of the (1s)(3d)
configurations indicates a much smaller energy difference than the cases for the (1s)(3s) and
(1s)(3p) configurations. This is consistent with the experimental observation that the singlet-
triplet energy gap for this (1s)(3d) pair of states is significantly smaller than those for the
(1s)(3s) and (1s)(3p) pairs of states.
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