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Abstract. We give an interaction between a drift and a fractional power of a degenerated
Laplacian such that the involved semi-group has a density by using the Malliavin Calculus for
boundary processes translated by ourself in semi-group theory in [1].

1. Introduction and statement of the main theorem
We consider m vector fields on Rd with bounded derivatives at each order X1, .., Xm and the
diffusion generator

L =
∂

∂s
+ 1/2

∑
i>0

(Xi)
2 (1)

on Rd+1. We could add a drift in (1), but it is done to simplify the proof. We consider a vector
field on Rd D with bounded derivatives at each order. Bismut [2] considers the generator

A = D − 1/2
√
−2L (2)

For the theory of fractional powers of Laplacian, we refer to the book of Yosida [3]. Let us recall
quickly its definition. L generates a semi-group Ps acting on bounded continuous functions f
on Rd+1:

∂

∂t
Ptf(s, x) = LPt(s, x) (3)

Then √
−2L = C

∫ ∞
0

s−3/2(Ps − I)ds (4)

A generates a Markovian semi-group exp[tA] acting on continuous functions f on R1+d:

∂

∂t
exp[tA]f(s, x) = A exp[tA]f(s, x) (5)

There is a stochastic representation of this semi-group (See [2]). Let (B1, .., Bm, zt) be a
Brownian motion on Rm+1 starting from the origin. Let Lt be the local time associated to
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zt ([4]) and At its right inverse process. We introduce the stochastic differential equation in
Stratonovitch sense issued from x:

dxt =
m∑
1

Xi(xt)dBi +D(xt)dLt (6)

We consider the subordinated process (xAt , At + s). Unlike xt, this process is not continuous
but is still a Markov process. We have the main relation

exp[tA]f(s, x) = E[f(At + s, xAt)] (7)

This paper follows the probabilistic intuition which comes from this stochastic representation of
the semi-group. But in [2] and [5], only stochastic differential equations appear which explain
that we can expulse the probabilistic language of [2] and [5].

The natural question is to know if the semi-group has an heat-kernel:

exp[tA]f(s, x) =

∫
R1+d

qt(s, x, s
′, x′)f(s′, x′)ds′dx′ (8)

This problem was solved by Bismut by using the Malliavin Calculus and a stochastic
representation of it ([2]) in the elliptic case. We applied Bismut’s technic to state an Hoermander
theorem for fractional powers of Laplacians in [5] We have translated Malliavin Calculus of
Bismut for Boundary processes in semi-group theory in [1] and state a regularity result for the
semi-group associated to A in the elliptic case. We do now an Hoermander type hypothesis. We
put

G1Y = Y (9)

GlY = ∪i≥0 ∪Z∈Gl−1
([Z,Xi]) ∪Gl−1Z (10)

We put:
El = ∪j≤l ∪i>0 (GjXi) (11)

The following theorem was proved in [5] by using the Calculus of Boundary Process of Bismut.
We prove it again by using the Malliavin Calculus of Bismut type in semi-group theory of [1]:

Theorem 1 Let us suppose that the uniform Hoermander’s hypothesis is checked:

inf
x∈Rd,‖f‖=1

∑
Y ∈El0

< Y, f >2 + < [D,Y ], f >2> C > 0 (12)

Then the heat-kernel on Rd+1 qt(0, x, s, y) exists.
Remark:It should be possible to show that (s, y)→ qt(0, x, s, y) is smooth.
Remark:It is possible to replace (12) by the general hypothesis (3.5) of [5].

2. The main ingredient of the proof
Let Ed = R1+d×Gd×Md where Gd denotes the set of invertible matrices on Rd and Md the set
of symmetric matrices on Rd. (s, x, U, V ) is the generic element of Ed. V is called the Malliavin
matrix.

On Ed we consider the vector fields:

D̂ = (0, D,DD(x)U, 0) (13)

X̂i = (0, Xi, DXi(x)U, 0) (14)
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Ŷ = (0, 0, 0,
m∑
i

< U−1Xi, . >
2) (15)

We consider the Malliavin generator L̂ on Ed:

L̂ =
∂

∂s
+ 1/2

m∑
i=1

(X̂i)
2 + Ŷ (16)

and the square root associated
√
−L̂. This semi-group on this bigger space is defined according

the line of (5).
We consider

Â = D̂ − 1/2

√
−2L̂ (17)

and the Malliavin semi-group exp[tÂ].
An adaptation of one of main result of Léandre [1] is the following:
Theorem 2 Let us suppose that the Malliavin condition is checked: for all p ∈ N , all s > 0

exp[tÂ][V −p1[0,s0]](0, x, I, 0) <∞ (18)

then

exp[tA]f(0, x) =

∫
R1+d

f(s, y)qt(s, y)dsdy (19)

where qt(s, y) ≥ 0.
Remark:The proof follows the proof of Theorem 2.1 of [1]. Following the general strategy of

the Malliavin Calculus, it is enough to show the theorem to get integration by parts formulas.
If f is with compact support

| exp[tA](df)(s, x)| ≤ C‖f‖∞ (20)

where C depends only from the support of f and ‖f‖∞ denotes the supremum norm of f . For
that, we integrate by parts under the underlying diffusion Ps and the Brownian motions Bi
as in part 3 of [1]. This allows to remove the space derivatives of f . In order to remove the
time derivatives in df(s, x), we integrate by parts on the subordinators At as it was done in

part 4 of [1]. The main difference with [1] is that D̂ appears when we take the variation of the
subordinated semi-group. It is the only change in the abstract theorem of part 5 of [1]. When we
get this abstract theorem, the drift D will appear another time in the inversion of the Malliavin
matrix V .

3. Inversion of the Malliavin matrix in semi-group theory
Let be

Fl(x, U, ξ) =
∑
Y ∈Gl

< U−1Y (x), ξ >2 (21)

where ξ is of modulus one. A simple adaptation of Lemma 3 of [6] shows:
Lemma 3 Let us suppose that

exp[t0Â][1[0,s0];Fl(I, ., ξ) > Ctα0 ](0, x0, U0, 0) > C > 0 (22)

for all x0 ∈ Rd, ‖U0‖ < t−ε0 for a small ε and some positive β. Then (22) remains true on an

interval of length tβ0 for another β.
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Since Â is Markovian, exp[tÂ] is represented by a stochastic process Xt following the same
line of the representation of exp[tA] by a stochastic process. Xt is a Markov jump process. It has
a Levy measure [7]. The main remark is the following: if the Levy measure of a jump process is
enough concentrated in small jumps, there are a lot of small jumps.We get:

Definition 4 If f is a function from R+ into R+, we consider the Levy measure associated
with the Malliavin matrix where ξ is of norm 1:

µξ(f) = C

∫ s0

0

ds

s3/2
P̂s[f(V ′(ξ)− V (ξ))](0, x, U, V ) (23)

We recall (See Lemma 3 of [6]):
Lemma 5 Let us suppose that F1(x, U, ξ) ≥ ρ for |U |+ |U−1| < ρ−ε for some small ε. Then

µξ[z > ρα] ≥ Cρβ for some positive α and some negative β.
The theorem will follow as in the proof of Theorem 1 (38), (39), (40) in [6] if we show the

next proposition:
Proposition 6 Let us suppose that |U |+ |U−1| < ρ−ε for some small ε . There exists α such

that
exp[ραÂ][F1(x, U, ξ) ≥ ρ; 1[0,s0]](0, x, U, 0) > C > 0 (24)

We can state an analog of Lemma 2 of [6]:
Lemma 7 Let us suppose that

exp[ραÂ][Fl(x, U, ξ) ≥ ρβ; 1[0,s0]](0, x0, U0, 0) > C > 0 (25)

where |U0|+ |U−10 | < ρ−ε for some small ε.. Then (25) remains true for l− 1 for others α and β.
By using this lemma, it is enough to show the following propopsition in order to show

Proposition 6:
Proposition 8 If we take l0 + 2, (25) is checked if |U |+ |U−1| < ρ−ε for some small ε.
Proof of proposition 8 Let us suppose that

Fl0(x0, U0, ξ) ≤ ρβ (26)

and
Fl0+2 ≤ ρβ1 (27)

By Hypothesis (12 ), we can find a Y ∈ El0 such that

< [D,Y ](x0), ξ >> C > 0 (28)

We choose C > 0 to simplify the exposition and we choose ε = 0 in order to simplify the
expostion of the proof.

We remark that if u < t and if γ < 1/2 that

exp[uÂ][1[tγ ,∞[](0, x0, U0, 0) ≤ Ctr (29)

for some r > 0. So it is enough to estimate

exp[uÂ][Fl0(., ., ξ) > ρα; 1[0,tγ ]](0, x0, U0, 0) (30)

for some well choosed α We put

G(x, U, ξ) =< U−1Y, ξ > g(
Fl0+2(x, U, ξ)

ρβ1
) (31)
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where g is a smooth function from R+ into [0, 1] equals to 1 in a neighborhood of 0 and to 0 in
a neighborhood of the infinity.

Let us suppose that
|x− x0|+ |U − U0| < Cρβ/2 (32)

Let us estimate for s′ ≤ tγ √
−L̂[G(., ., ξ)1[0,tγ ]](s

′, x, U, 0) (33)

For that we look at
f(s) = P̂s[G(., ., ξ)1[0,tγ ]](s

′, x, U, 0) (34)

where P̂s is the semi-group generated by L̂.

f ′(s) = P̂s[L̂[G(x′, U ′, ξ)1[0,tγ ]]](s
′, x, U, 0) (35)

We distinguish if
|x− x′|+ |U − U ′| < C.ρβ/2 (36)

or not. If yes
|L̂[G(x′, U ′, ξ)1[0,tγ ]]| ≤ ρβ/21[0,tγ ] (37)

If not we remark that

P̂s[|x− x′|+ |U − U ′| ≥ ρβ/2](s′, x, U, 0) ≤ Csρ−β (38)

In conclusion, we deduce that

|
√
−L̂[G(., ., ξ)1[0,tγ ]](s

′, x, U, 0)| ≤ ρβ/2tγ/2 + ρ−βρ−2β1t
3γ
2 (39)

Let us consider the case
|x− x0|+ |U − U0| > Cρβ/2 (40)

In such a case
|f ′(s)| ≤ Cρ−2β11[0,tγ ] (41)

Therefore

|
√
−L̂[G(., ., ξ)1[0,tγ ]](s

′, x, U, 0)| ≤ Cρ−β1tγ/21[0,tγ ] (42)

On the other hand

|
√
−L̂[|U ′ − U0|2 + |x′ − x0|2; 1[0,tγ ]](s

′, x, U, 0)|

≤ A1[0,tγ ]

∫ tγ

0
ds

s

s3/2
≤ Ctγ/21[0,tγ ] (43)

This shows that

exp[uÂ][|U − U0|2 + |x− x0|2; 1[0,tγ ]|](0, x0, U0, 0) ≤ Cutγ/2 (44)

Therefore
exp[uÂ][|U − U0|+ |x− x0| > ρβ/2; 1[0,tγ ]|](0, x0, U0, 0) ≤ utγ/2ρ−β (45)

By putting all together, we deduce that if γ < 1/2

| exp[uÂ][

√
−L̂[G(., ., ξ)1[0,tγ ]]](0, x0, U0, 0)|

C(ρβ/2tγ/2 + ρ−βρ−2β1t
3γ
2 + utγ/2ρ−2β1ρ−β) (46)
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Let us now estimate
exp[uÂ][D̂G(x, U, ξ)1[0,tγ ]](0, x0, U0, 0) (47)

We suppose first of all that
|x− x0|+ |U − U0| < Cρβ/2 (48)

In such a case we have a lower bound in C > 0 of the expression. If the previous inequality
is not checked we have an estimate by using the previous considerations in Cutγ/2ρ−β1ρ−β By
using the semi-group property for exp[uÂ] we deduce that if u < tγ

g′(u) =
∂

∂u
exp[uÂ][G(., ., ξ)1[0,tγ ]](0, x0, U0, 0) ≥

C − Ct3γ/2ρ−β1ρ−β − C(ρβ/2tγ/2 + ρ−βρ−2β1t
3γ
2 (49)

We distinguish if
|g(0)| < Cρ3β (50)

or not. If (50) is not checked, we can apply Lemma (7). If not we have β1 < β. We deduce that

g(t) ≥ Ct− Cρ3β − Cρ−βρ−2β1t1+3γ/2 − Cρβ/2t1+γ/2 (51)

We choose t = C1ρ
β for a big C1.From (51), we deduce that

g(C1ρ
β) ≥ Cρβ − Cρ−βρ−2β1ρ(β)(1+3γ/2) (52)

to choose γ close from 1/2 and β1 very small in order to deduce that

g(C1ρ
β) ≥ Cρβ (53)

We deduce that
exp[C1ρ

βÂ][< U−1Y (x), ξ >> Cρβ](0, x0, U0) > C > 0 (54)

Therefore the result holds.
♦.
Remark: The principle of the proof is very simple: we establish a criterium in order to

show that the Levy measure associated to V (ξ) is very concentrated in small jumps. If the Levy
measure is very concentrated in small jumps, there are a lot of small jumps which obliges that
V (ξ) to be not very small. If this criterium is not satisfied, another criterium will obliged it to
be satisfied. In [6], this criterium comes from the interaction between two Levy measures. Here
it come from the interaction between a Levy measure and the drift D.
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