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Abstract. A Multi-Layer Perceptron (MLP) defines a family of artificial neural networks 
often used in TS modeling and forecasting. Because of its “black box” aspect, many 
researchers refuse to use it. Moreover, the optimization (often based on the exhaustive 
approach where “all” configurations are tested) and learning phases of this artificial 
intelligence tool (often based on the Levenberg-Marquardt algorithm; LMA) are 
weaknesses of this approach (exhaustively and local minima). These two tasks must be 
repeated depending on the knowledge of each new problem studied, making the process, 
long, laborious and not systematically robust. In this paper a pruning process is 
proposed. This method allows, during the training phase, to carry out an inputs selecting 
method activating (or not) inter-nodes connections in order to verify if forecasting is 
improved. We propose to use iteratively the popular damped least-squares method to 
activate inputs and neurons. A first pass is applied to 10% of the learning sample to 
determine weights significantly different from 0 and delete other. Then a classical batch 
process based on LMA is used with the new MLP. The validation is done using 25 
measured meteorological TS and cross-comparing the prediction results of the classical 
LMA and the 2-stage LMA. 

1.  Background 
The primary goal of time series (TS) analysis is forecasting, i.e. using the past to predict the future [1]. 
This formalism is used in many scientific fields like econometrics, seismology or meteorology. Lot of 
methods are dedicated to the prediction of discrete phenomena, one of the most popular is the artificial 
neural network (ANN) [1,2]. From a mathematical point of view, ANN is a function defined as the 
composition of other functions [3]. Members of the class of such functions are obtained by varying 
parameters, (as connections or weights). A Multi-Layer Perceptron (MLP) defines a family of 
functions often used in TS modeling [1]. In this model, neurons are grouped in layers and only 
forward connections exist. A typical MLP consists of an input, hidden and output layers, including 
neurons, weights and a transfer functions. Each neuron (noted i) transforms the weighted sum (weight 
wij, bias bi) of inputs (xj) into an output ( )( 1 i

n

j ijji bwxfy += ∑ =
) using a transfer function (f). The goal 
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of this method is to determine weights and bias for a given problem. A complex process is necessary 
to adapt connections using a suitable training algorithm (often based on the Levenberg-Marquardt 
algorithm; LMA [4,5]). The training step is dependent of the number of inputs, layers and hidden 
nodes. The better configuration defines the optimized MLP [1]. This step is the weaknesses of this 
approach because no consensus or scientific rules exist, often the use of the exhaustive approach 
(where “all” configurations are tested) is the only usable and must be repeated for new studied 
problem, making the process, long, laborious and not systematically robust. This “black box” aspect 
leads any researchers to refuse to use it. In this paper a pruning process allowing to automatically 
selecting inputs is proposed. This method allows, during the training phase, to carry out a selecting 
method activating (or not) inter-nodes connections. With this process, the optimization step becomes 
self-acting and the parsimony principle is kept. Less the MLP is complex more it is efficient [3]. 

2.  Materials and methods 
We propose to use iteratively the popular LMA also known as the damped least-squares method  to 
activate the inputs and neurons (m weights and bias) [6]. A first pass is applied to 10% of the learning 
sample. For each step, a system of m non-linear equations with m unknowns is solved (see equation 1 
in case of 1 hidden layer MLP where O and I are the outputs and inputs, W1, B1 and W2, B2 the weights 
and bias matrices of the hidden and output layer). 

 
2112 ))..(tanh( BBIWWO ii ++=  with 1<i<m,         (1) 

 
After this first phase, each weights and bias ( [ ]mi ,1∈ω ) are represented by probability distributions. A 
statistical test based on the bootstrap distribution is used to determine if the first moment of each  is 
significantly different from 0 [7]. Before to initiate the second pass, the network is customized and 
connections related to each  non-significantly different from 0 are canceled. Then a classical batch 
process based on LMA is used with the new MLP. We validated our method with 5 hourly 
meteorological TS (wind direction WD, wind speed WS, Global radiation Glo, Humidity Hum and 
temperature Tem), each one measured in 5 French sites (Ajaccio, Bastia, Corte, Marseille and Nice). 
Note that no pretreatment are operated and that different non-stationarities and periodicities are 
present. For all TS and locations, we used 3200 measures for the training and 400 for the cross 
comparison of the classical LMA and the 2-stage LMA during the year 2008. 

2.1.  First pass 
The first stage begins with the generation of N (10% of the total data used during training randomly 
chosen) systems of m nonlinear equations with m unknowns (MLP constructed with m weights and 
bias). The method chosen for solve this problem is the LMA method and the ad-hoc objective function 
F (mean square error between calculations and measures). It is an approximation of the Gauss-newton 
method, the result of the kth iterations (ωκ) corresponding to the local minimum of the function F is 
generated by the linear set of equations (1) [4–6,8]: 
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     (2) 
J denotes the Jacobian matrix of F and the scalar λk controls both the magnitude and variation dk 

(
kkkd ωωω −=Δ= +1
). After the N solving, all the weights and bias are represented by a distribution 

which will be used during the second stage of the second stage of the methodology. Note that these 
distributions are not all normal (according to the Jarque-Bera test). 

2.2.  Second pass 
Before to initiate the second pass, the network is customized and connections related to each  non-
significantly different from 0 are canceled. We use confidence intervals from the bootstrap 
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distributions (4000 samples) of the weights and bias parameters [7]. The rules of selection (directly 
linked to the α value of significance model) is based on the product of the two endpoints t1 and t2 
defined respectively by the α/2th and (1-α/2)th percentiles of the distribution. If t1. t2 < 0 the weight (or 
bias) is considered as non-significantly different from 0, else it is considered different from 0. The 
connection of the MLP corresponding to the first case (t1. t2 < 0) are cancelled, other are kept. The 
pruned MLP (noted pMLP) is then trained with the classical LMA. 

3.  Results 
In the Figure 1a is represented the box plot of the nRMSE distribution concerning the five 
meteorological parameters and the five studied cities. For each case, seven runs are operated, so 175 
manipulations are performed with the pruned methodology describe above (at left in the Figure 1 and 
noted pMLP) and the standard approach (at right in the Figure 1 and noted MLP). The chosen 
architecture is the same for all cases: 7 inputs representing the seven first lags of the meteorological 
parameter tested and 2 hidden nodes (only one hidden layer). In this figure, we see that the first, the 
second and the third quartiles are equivalent; thereby we understand that a lot of connections and 
weights are superfluous. The results of all the simulations are represented in the Figure 1b. Only the 
points positioned in the upper zone are related to “pMLP is better than MLP” cases are plotted. It 
appears the points are closer to the y=1 curve in the top area rather than in the bottom area, but this 
observation seems insignificant. 

  
Figure 1: a. nRMSE distribution comparison related to pMLP (at left) and MLP (at right). 

b. ratio of the nRMSE generated by MLP and pMLP 
 

The table 1 exposes the results for all locations and parameters of the MLP and pMLP approach, 
the minimum of the nRMSE and nMAE [1] through the seven runs.  

 
Data City MLP pMLP 

nRMSE nMAE Ratio pruning nRMSE nMAE 

WD 

Aja 0.765 0.463 0.27 0.762 0.461 
Bas 0.393 0.257 0.27 0.388 0.252 
Cor 1.191 0.941 0.21 1.194 0.931 
Mar 0.387 0.256 0.20 0.388 0.257 
Nic 0.304 0.199 0.20 0.305 0.211 

WS 

Aja 0.399 0.302 0.11 0.410 0.308 
Bas 0.374 0.277 0.18 0.370 0.279 
Cor 1.148 0.910 0.22 1.183 0.902 
Mar 0.377 0.264 0.21 0.377 0.263 
Nic 0.318 0.206 0.23 0.314 0.202 

Glo 

Aja 0.525 0.413 0.17 0.472 0.372 
Bas 0.439 0.323 0.21 0.456 0.370 
Cor 0.298 0.214 0.21 0.323 0.250 
Mar 0.416 0.346 0.21 0.378 0.302 
Nic 0.455 0.380 0.20 0.465 0.386 

Hum Aja 0.064 0.049 0.22 0.064 0.048 
Bas 0.061 0.044 0.20 0.061 0.045 
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Cor 0.055 0.036 0.23 0.056 0.037 
Mar 0.053 0.036 0.23 0.053 0.036 
Nic 0.083 0.059 0.19 0.083 0.059 

Tem 

Aja 0.099 0.077 0.29 0.101 0.077 
Bas 0.113 0.080 0.25 0.111 0.079 
Cor 0.224 0.158 0.29 0.207 0.133 
Mar 0.111 0.079 0.28 0.109 0.073 
Nic 0.147 0.108 0.21 0.146 0.111 

Table 1: nRMSE and nMAE minima for all location and all parameters, in bold the better results between 
MLP and pMLP 

 
pMLP is very slightly better than MLP, in 60% of cases the nMRSE and the nMAE are the lowest. 
Note that the pruning concerns about 20% of weights and bias. 

4.  Conclusions 
The 2-pass approach improves slightly the forecasting quality. In average, 20% of the connections are 
removed with this approach. According to the parsimony principle, these simplifications increase the 
generalization capacity and should allow building a robust predictor [2].  

This first study done in a quasi-optimized case (7 inputs and 2 hidden neurons) precedes a more 
general one, where a standard MLP (more than 15 inputs and 15 hidden nodes) will be studied. Indeed, 
we have shown that the pruning method presented here is able to simplify the network while the 
performance is roughly equivalent. Applying the 2-pass approach in a 15x15 MLP should allow to 
optimize it without apply the exhaustive test where all the architectures are try out. Moreover, for 
users it is a totally transparent methodology, suitable for all TS and faster than classical optimization 
process. According to the conclusion of this study, it possible that results based on the 2-stage 
approach may be better than the classical approach based on the “1-stage” LM algorithm.  
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