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Abstract. We obtain an analytical expression for the energy eigenvalues of the Hyperbolical
potential using an approximation of the centrifugal term. In order to obtain the l-states
solutions, we use the the Feynman path integral approach to quantum mechanics. We show
that by performing nonlinear space-time transformations in the radial path integral, we can
derive a transformation formula that relates the original path integral to the Green function
of a new quantum solvable system. The explicit expression of bound state energy is obtained
and the eigenfunctions are given in terms of hypergeometric functions. The present results are
consistent with those obtained by others methods.

1. Introduction
The calculation of exact solutions of the radial Schrödinger equation (rSe) in some physical
potential models has been an important research area. Unfortunately, for an arbitrary l-state
(l 6= 0), the radial Schrödinger equation (rSe) does not admit an exact solution. In this case,
the rSe is solved numerically [1], or by approximation methods [2]. Different methods have been
used in this sense such as the standard method [3] the asymptotic iteration method [4] and the
exact quantization rule method [5]. An example of exponential-type potentials that we want to
treat is the Hyperbolical potential, it has the form:

V Hyp(r) = D [1− σ0 coth(αr)]2 (1)

Here D, α and σ0 are positive parameters.
The purpose of this paper is to study l-states solution of the hyperbolical potential within

the Feynman path integrals formalism in order to improve the previous results [6]. The method

we propose consists of using the approximation [7] 1
r2
≈ 1

a2

(
C0 + 1

e
r
a−1

+ 1

(e
r
a−1)2

)
, where C0

is a dimensionless parameter, for the centrifugal term. This approximation is based on the
expansion of the centrifugal term in a series of exponentials depending on the intermolecular
distance r and keeping terms up to second order. The organization of the paper is as follows. In
section 2, we calculate the l-wave eigensolutions for the Hyperbolical potential using the Duru-
Kleinert method of path integral formalism. In section 3, we present our numerical results for
certain values of the quantum numbers n and l. Conclusions are drawn in section 4.
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2. The path integral for the Hyperbolical potential
The propagator related to the Hyperbolical potential, between two time-space points (~r ′, t′)

and
(
~r
′′
, t′′
)

is written [8]:

K(~r ′′, t′′;~r ′, t′) =
1

4πr′′r′

∞∑
l=0

(2l + 1)Kl(r
′′, t′′; r′, t′)Pl(cos θ). (2)

Pl(cos θ) is the Legendre polynomial with θ ≡ (~r ′′, ~r ′) and

Kl(r
′′, t′′; r′, t′) = lim

N→∞

∫ N∏
j=1

exp

[
i

h̄
Sj

] N∏
j=1

[
m

2πih̄ε

] 1
2
N−1∏
j=1

drj . (3)

with Sj = m
2ε (∆rj)

2−εVeff (rj) where

Veff (rj) =
h̄2l(l + 1)

2mrjrj−1
+D [1− σ0 coth(αrj)]

2 (4)

∆rj = rj − rj−1, ε = tj − tj−1, t
′ = t0 and t′′ = tN ,

To solve the above equation for non-zero angular momentum states, we need to apply the
approximate scheme to the centrifugal term given by Ikhdair in ref [7]

1

r2
≈ 4α2

C0 +
e−2αr

1− e−2αr
+

(
e−2αr

1− e−2αr

)2
 (5)

where the parameter C0 = 0.0823058167837972 is a proper shift found by the expansion
procedures. Therefore the equation (4) becomes

Veff (rj) =
2α2h̄2l(l + 1)

m

C0 +
e−2αrj

1− e−2αrj
+

(
e−2αrj

1− e−2αrj

)2


+D [1− σ0 coth(αrj)]
2 (6)

we can also write :

Veff (rj) = −A coth(αrj) +
B

sinh2(αrj)
+ C, (7)

where A = 2Dσ0, B = h̄2

8m l(l + 1) (2α)2 +Dσ2
0 and C = h̄2l(l+1)C0

2m (2α)2 +D
(
1 + σ2

0

)
In order to reach the expression of the space-time transformed propagator, we introduce the

following space coordinate change

r =

(
1

α

)
arccoth

(
2coth2q − 1

)
. (8)

The propagator expression becomes

K̂l(q
′′, q′; s′′) = exp

[
i

h̄
s′′(E − C +A)(

1

α
)2

]
(9)

×
∫
Dq(s) exp

[
i

h̄

∫ s′′

0

(
m

2
q̇2 − h̄2

2m

[
η(η − 1)

sinh2 q
− υ(υ − 1)

cosh2 q

])
ds

]

= exp

[
i

h̄
s′′(E − C +A)(

1

α
)2

]
KMPT
l (q′′, q′; s′′) (10)
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with η = 1
2 ±

√
1 + 8mB(

1

α)2/h̄2 and υ = 1
2 ±

√
−2m(

1

α)2(E − C −A)/h̄2 and KMPT
l is the

path integral of the modified Pöschl-Teller potential, which is a known solved problem [9].
The bound states and the wave functions are explicitly given by [10]:

χ
(k1,k2)
l,n (q) = N (k1,k2)

n (sinh q)2k2−1/2(cosh q)−2k1+3/2 (11)

×2F1(−k1 + k2 + k,−k1 + k2 − k + 1; 2k2;− sinh2 q) (12)

and

EMPT
n = − h̄2

2m
[2(k1 − k2 − n)− 1]2 (13)

with N
(k1,k2)
n = 1

Γ(2k2)

(
(2k−1)Γ(k1+k2−k)Γ(k1+k2+k−1)

Γ(k1−k2+k)Γ(k1−k2−k+1)

)1/2
, k = k1 − k2 − n.

The results (11) and (13) are used in the following section to determine the spectrum and
wave functions of the Hyperbolical potential.

2.1. Energy spectrum and wave functions
Calculating Kl(q

′′, q′; s′′) allows us to obtain the Green function. Since this is known, the whole
energy spectrum is obtained from its poles, and from the residues at the poles we obtain the
corresponding wave functions.

Substituting (11) in (10), we get

K̂l(q
′′, q′; s′′) =

Nm∑
n=0

exp

{
i

h̄
s′′
[
(E − C +A)(2a)2 − EMPT

n

]}
χ

(k1,k2)
l,n (q′′)χ

∗(k1,k2)
l,n (q′) (14)

Then, by integrating this latter over the pseudo-time parameters s′′, the Green function G is
written as:

Gl(r
′′, r′;E) =

Nm∑
n=0

χ
MR(k1,k2)
l,n (r′′)χ

MR∗(k1,k2)
l,n (r′)

EMR
n,l − E

(15)

As in [11, 12], satisfying the boundary conditions for r → 0 and r →∞ gives:

k1 = 1
2

[
(1 + 1

2

(
s+ 2n+ 1)) + 2mA(

1

α)2/(h̄2(s+ 2n+ 1
)
))
]
,

k2 = 1
2

(
1 +

√
1 + 8mB(

1

α)2/h̄2

)
≡ 1

2 (1 + s) .

Substituting these values of k1, k2 in (11) and (13), and by considering u = 1
2 [1 + tanh(2αr)],

we get

χ
Hyp(k1,k2)
l,n (r) =

√
αN (k1,k2)

n (u− 1)(1/2)−k1+nuk1−1−(1/2)s−n
2F1(−n, 2k1 − n− 1; s+ 1;

1

1− u
)(16)

The energy spectrum is obtained from the poles,

EHypn,l = α2EMPT
n −A+ C (17)

= −
[
h̄2α2(s+ 2n+ 1)2

8m
+

2mA2

h̄2α2(s+ 2n+ 1)2

]
+ C (18)
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Table 1. Eigenvalues −En,l of the Hyperbolical potential in atomic units (h̄ = m = 1) with
D = 10 and σ0 = 0.1.

States α Present Ikhdair et al[7] Lucha et al[1]

2p 0.1 2.61885 2.61874 2.61935
0.15 3.90570 3.90544 3.90645
0.2 5.00378 5.00331 5.00457
0.25 5.88668 5.88594 5.88725

3p 0.1 4.73552 4.73540 4.73638
0.15 6.04569 6.04543 6.04649
0.2 6.91710 6.91663 6.91733
0.25 7.48474 7.48400 7.48358

3d 0.1 3.62734 3.62699 3.62769
0.15 5.29484 5.29404 5.29510
0.2 6.47635 6.47492 6.47598

4p 0.1 6.00298 6.00287 6.00390
0.15 7.11552 7.11526 7.11589

4d 0.1 5.33164 5.33129 5.33216
0.15 6.73663 6.73583 6.73642

4f 0.1 4.69036 4.68965 4.69058
0.15 7.43683 6.42992 6.43112

3. Results and discussions
With our method, the energy EHypn,l of the Hyperbolical potential, for angular momentum (l 6= 0),
has been calculated. Indeed, to show the accuracy of the approximation scheme, we calculate the
energy eigenvalues for various n and l quantum numbers. Our main results for the Hyperbolical
potential (Eq. (18)) are displayed in the Table 1 and compared with the numerical values of
Lucha and Schöberl [1] and with the Numerov-Uvanov method [7]. It is found that our energy
eigenvalues are in good agreement with those obtained numerically [1], and better than those
obtained by using Numerov-Uvanov method [7].

4. Conclusion
In this paper, we have given analytic solutions for the Hyperbolical potential by using an

approximation scheme for the centrifugal term potential. This approach enables us to find the l-
dependent solutions and the corresponding energy eigenvalues for different screening parameters
of the Hyperbolical potential.

Finally, the set of results we have ended with shows that the path integral approach
constitutes a reliable alternative to the Schrödinger formalism for solving such problems.
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