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Abstract. The application of appropriate transform pairs, such as the Fourier, the Laplace,
the sine, the cosine and the Mellin transforms, provides the most well known method for
constructing analytical solutions to a large class of physically significant boundary value
problems. However, this method has several limitations. In particular, it requires the given PDE,
domain and boundary conditions to be separable, and also may not be applicable if the given
boundary value problem is non-self-adjoint. Furthermore, it expresses the solution as either
an integral or an infinite series, neither of which are uniformly convergent on the boundary of
the domain (for nonvanishing boundary conditions), which renders such expressions unsuitable
for numerical computations. Here, we review a method recently introduced by the first author
which can be applied to certain nonseparable and non-self-adjoint problems. Furthermore, this
method expresses the solution as an integral in the complex plane which is uniformly convergent
on the boundary of the domain. This method, which also suggests new numerical techniques,
is illustrated for both evolution and elliptic PDEs. Athough this method was first applied to
certain nonlinear PDEs called integrable and was originally formulated in terms of the so-called
Lax pairs, it can actually be applied to linear PDEs without the need to analyse the associated
Lax pair. The existence of Lax pairs is used here in order to motivate a related development,
namely the emergence of a novel formalism for analysing certain inverse problems arising in
medical imaging. Examples include PET and SPECT.

1. Boundary Value Problems
1.1. Evolution PDEs of the Half-Line
In order to introduce the new method we consider the simplest possible initial-boundary value
(IBV) problem for an evolution PDE, namely the heat equation on the half-line:

ut = uxx, 0 < x < ∞, 0 < t < T, T > 0, (1)

where
u(x, 0) = u0(x), 0 < x < ∞, u(0, t) = g0(t), 0 < t < T. (2)

The functions u0(x) and g0(t) are given functions with appropriate smoothness and u0(x) decays
as x → ∞.

The above IBV problem can be solved by the sine-transform pair,

f̂(λ) =

∫ ∞

0
sin(λx)f(x)dx, λ > 0; f(x) =

2

π

∫ ∞

0
sin(λx)f̂(λ)dλ, x > 0. (3)
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Figure 1. The domain D+ for the heat equation.

Employing this transform we find

u(x, t) =
2

π

∫ ∞

0
e−λ2t sin(λx)

[ ∫ ∞

0
sin(λξ)u0(ξ)dξ − λ

∫ t

0
eλ

2sg0(s)ds
]
dλ. (4)

The above representation suffers from the generic disadvantage that is associated with every
representation obtained via a classical transform, namely it is not uniformly convergent at the
boundary. Indeed, if the right-hand-side of (4) converged uniformly at x = 0, then we could take
the limit x → 0 inside the integral and we would obtain u(0, t) = 0 instead of u(0, t) = g0(t).

The unified method yields

u(x, t) =
1

2π

∫ ∞

−∞
eiλx−λ2tû0(λ)dλ− 1

2π

∫
∂D+

eiλx−λ2t
[
û0(−λ) + 2iλG0(λ

2)
]
dλ, (5)

where the functions û0(λ) and G0(λ) are defined by

û0(λ) =

∫ ∞

0
e−iλxu0(x)dx, Imλ ≤ 0, G0(λ) =

∫ T

0
eλsg0(s)ds, λ ∈ C, (6)

and the contour ∂D+ is the boundary of the domain D+ shown in Fig. 1.
It is straightforward to show [1, 2] that the right-hand-side of (5) is indeed uniformly

convergent at x = 0. Furthermore, the only (x, t) dependence of the right-hand-side of (5)

is in the form eiλx−λ2t, thus it is immediately obvious that this representation satisfies the heat
equation.

The experienced reader may worry about the dependence of G0(λ) on T, which contradicts
causality (the solution of an evolution equation cannot depend on future data). However, using
analyticity arguments, it can be shown [1, 2] that G0(λ) can be replaced by the function G0(λ, t),
where

G0(λ, t) =

∫ t

0
eλsg0(s)ds, λ ∈ C. (7)

The limited applicability of the standard transforms becomes evident by considering the
Stokes equation on the half-line:

ut + uxxx + ux = 0, 0 < x < ∞, 0 < t < T, T > 0, (8)

with the initial and boundary conditions defined in (2).
It can be rigorously established [3, 4] that there does not exist an appropriate x-transform for

this problem, i.e. there does not exist the analogue of the sine transform for a linear evolution
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Figure 2. The domain D+ for the Stokes equation.

PDF involving a third order derivative. One may attempt to solve the above IBV problem
with the Laplace transform in t. But then one has to make the unnatural initial assumption of
T = ∞, and furthermore one has to solve a cubic algebraic equation!

The unified method yields

u(x, t) =
1

2π

∫ ∞

−∞
eiλx−(iλ−iλ3)tû0(λ)−

1

2π

∫
∂D+

eiλx−(iλ−iλ3)tg̃(λ)dλ, (9)

where the function û0(λ) is defined in (6), g̃(λ) is defined by

g̃(λ) =
1

ν1 − ν2
[(ν1 − λ)û0(ν2) + (λ− ν2)û0(ν1)] + (3λ2 − 1)G0(ω(λ)), (10)

with G0(λ) defined in (6) and ω(λ) given by ω(λ) = iλ− iλ3; the contour ∂D+ is the boundary
of the domain defined by

D+ = {Re ω(λ) < 0} ∩ C+ (11)

and shown in Fig. 2. The complex numbers ν1 and ν2 are the two nontrivial transformations
λ → ν1(λ), λ → ν2(λ) which leave ω(λ) invariant, i.e. they are the two nontrivial roots of the
equation ω(λ) = ω(ν(λ)):

ν2j + λνj + λ2 − 1 = 0, j = 1, 2. (12)

The unified method involves the following three steps:
Step 1: Rewrite the given PDE in a divergence form, or equivalently in terms of a closed
differential form.
For the heat equation we find

(e−iλx+λ2tu)t − (e−iλx+λ2t(ux + iλu))x = 0, λ ∈ C. (13)

Equivalently, the following differential one-form is closed:

W (x, t, λ) = e−iλx+λ2t[udx+ (ux + iλu)dt]. (14)

If the PDE is valid in a given domain Ω then Green’s theorem immediately implies the following
global relation (GR): ∫

∂Ω
W = 0. (15)

For the heat equation on the half-line the GR becomes:

eλ
2T û(λ, T ) = û0(λ)− iλG0(λ

2)−G1(λ
2), Imλ ≤ 0, (16)
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Figure 3. The analysis of the GR for the Stokes equation.

where G0(λ) is defined in (6) and the functions G1(λ) and û(λ, T ) are defined by

G1(λ) =

∫ T

0
eλsux(0, s)ds, λ ∈ C; û(λ, T ) =

∫ ∞

0
e−iλxu(x, T )dx, Imλ ≤ 0. (17)

Step 2: Integral representation of the solution.
The representation can be obtained either using the Fourier transform on the half-line and then
deforming the relevant integral from the real line to the complex λ-plane, or using the spectral
analysis of the associated Lax pairs [2]. For the heat equation we find

u(x, t) =
1

2π

∫ ∞

−∞
eiλx−λ2tû0(λ)dλ− 1

2π

∫
∂D+

eiλx−λ2t[G1(λ
2) + iλG0(λ

2)]dλ, (18)

where ∂D+ is shown in Fig. 1.
Step 3: Elimination of the unknown boundary values.
This can be achieved by using the GR and by employing all transformations in the complex
λ-plane which leave the associated ω(λ) invariant. For the heat equation, ω(λ) = λ2, thus
replacing in the GR λ with −λ, we find

eλ
2T û(−λ, T ) = û0(−λ) + iλG0(λ

2)−G1(λ
2), Imλ ≥ 0. (19)

Solving this equation for G1 and using the fact that û(−λ, T ) does not contribute to the solution
u(x, t) [1, 2], we find that (18) becomes (5).

For the Stokes equation, the associated GR is

G2 + iλG1 = (λ2 − 1)G0 − û0(λ)− e(iλ−iλ3)T û(λ, T ), Imλ ≤ 0. (20)

Replacing in this equation λ by ν1 and by ν2 we find two equations, both of which are valid in
D+, see Fig. 3. Then, neglecting the contribution of û(ν1, T ) and û(ν2, T ), we find

G1 ∼ −i(ν1 + ν2)G0 + i
û0(ν1)− û0(ν2)

ν1 − ν2
, G2 ∼ −(1 + ν1ν2)G0 +

ν2û0(ν1)− ν1û0(ν2)

ν1 − ν2
. (21)

Numerical Implementation
For the case that û0(λ) and G0(λ) can be computed explicitly, it is straightforward to compute
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Figure 4. The contour L for the heat equation.

numerically the solution. Consider, for example, the heat equation with the following initial and
boundary condition:

u0(x) = x exp(−a2x), g0(t) = sin bt, a, b > 0. (22)

Then, (4) becomes

u(x, t) =
1

2π

∫
∂D+

eiλx−λ2t

[
1

(iλ+ a)2
− 1

(−iλ+ a)2
− λ

(
e(λ+ib)t − 1

λ+ ib
− e(λ−ib)t − 1

λ− ib

)]
dλ. (23)

On the contour ∂D+, eiλx decays exponentially for large λ, whereas e−iλ2t oscillates. However,
deforming ∂D+ to the contour L, see Fig. 4, we achieve decay as λ → ∞ in both eiλx and e−iλ2t.
Thus, the deformed integral can be computed numerically most efficiently [5].

1.2. Evolution PDEs on the Interval
The heat and the Stokes equations with {0 < x < 1, 0 < x < T} are analysed in [6]. For both
these equations, the unified method yields u(x, t) in terms of integrals in the complex λ-plane (as
opposed to infinite series). It should be emphasized that it is impossible to express the solution
of a typical IBV problem for the Stokes equation in terms of an infinite series. Therefore, the
usual statement that a finite domain corresponds to a discrete spectrum is not valid in general
(unless the associated problem is self-adjoint).

1.3. Elliptic PDEs in the Interior of a Polygon
For elliptic PDEs, including the Laplace, the modified Helmholtz and Helmholtz equations,
formulated in the interior of a polygon, the unified method: (a) for certain simple domains, like
the interior of an equilateral triangle, provides the analytical solution for a variety of boundary
value problems, for which apparently the classical approaches fail. (b) For an arbitrary polygon,
it provides a powerful approach for computing numerically the associated generalized Dirichlet
to Neumann map, i.e. computing the unknown boundary value in terms of the given boundary
data.

Consider for example the modified Helmholtz equation

∂2u

∂x2
+

∂2u

∂y2
− β2u = 0, β > 0, x, y ∈ R. (24)

It is straightforward to verify that the following differential form W is closed:

W (x, y, λ) = e−iβ
2 (λz−

z̄
λ)
{[

−uy +
β

2

(
λ+

1

λ

)
u

]
dx+

[
ux +

β

2

(
iλ+

1

iλ

)
u

]
dy

}
,

λ ∈ C \ {0}. (25)
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Hence, if ∂Ω denotes the boundary of Ω then the following GR is valid:∫
∂Ω

W (x, y, λ) = 0, λ ∈ C \ {0}. (26)

In the particular case of a square with corners at (1,1), (1,-1),(-1,-1), (-1,1), (26) becomes

4∑
j=1

ûj(λ) = 0, λ ∈ C \ {0}, (27)

where

û1(λ) = e
β
2 (iλ+

1
iλ)
∫ −1

+1
e

β
2 (λ+

1
λ)y
[
u(1)x +

β

2

(
iλ+

1

iλ

)
u(1)

]
dy, (28)

and similarly for {uj(λ)}42. Equation (27) involves four unknown functions, however (27) is valid
for all λ ∈ C \ {0}. By expanding the unknown functions in terms of Legandre polynomials and
by choosing appropriate collocation points λ = λj , we can solve the GR in an efficient way with
spectral accuracy [7, 8].

2. Medical Imaging
Equation (13) suggests the introduction of the “potential” e−iλx+λ2tµ, satisfying(

e−iλx+λ2tµ
)
x
= e−iλx+λ2tu,

(
e−iλx+λ2tµ

)
t
= e−iλx+λ2t(ux + iλu) (29)

These equations provide a Lax pair formulation for the heat equation.
The initial value problem of the heat equation can be solved by the Fourier transform. The

above Lax pair suggests that this transform can be constructed via the spectral analysis of the
first of equations (29). Indeed, it was shown in [9] that the spectral analysis of the equation

(∂x − iλ)µ(x, λ) = u(x), (30)

yields the 1-D Fourier transform; similarly the spectral analysis of the equation

(∂x1 + i∂x1 − λ)µ(x1, x2, λ) = u(x1, x2), (x1, x2) ∈ R2, (31)

yields the 2-D Fourier transform. This has lead to the emergence of a new method for deriving
transforms, or equivalently for inverting certain integrals. The power of this new method was
illustrated by R Novikov [10], who was able to invert the so-called attenuated Radon transform.
This transform plays the same crucial role in SPECT that the Radon transform plays in CT
and in PET [11, 12, 13, 14].
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