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Abstract. Digital image segmentation is a process in which one assigns distinct labels to
different objects in a digital image. The MOFS (Multi Object Fuzzy Segmentation) algorithm
has been successfully applied to the segmentation of images from several modalities. However,
the traditional MOFS algorithm fails when applied to images whose composing objects are
characterized by textures whose patterns cannot be successfully described by simple statistics
computed over a very restricted area. Here, we present an extension of the MOFS algorithm
that achieves the segmentation of textures by employing adaptive affinity functions that use the
Skew Divergence as a measure of distance between two distributions. These affinity functions
are called adaptive because their associated area (neighborhood) changes according to the
characteristics of the texture being processed. We performed experiments on mosaic images
composed by combining rock sample images which show the effectiveness of the adaptive skew
divergence based fuzzy affinity functions.

1. Introduction

Digital image segmentation is the process of assigning distinct labels to different objects in a
digital image. The task of segmenting out an object from its background in an image becomes
particularly hard for a computer when, instead of the intensity values, what distinguishes the
object from the background is some textural property.

Textures are generally described as the feel or shape of a surface or substance, and in the
areas of imaging they are characterized by statistical distributions of the observed intensities.
Textures can be classified as structural or non-structural [1], where structural textures have
a repeated pattern associated with a texture periodicity [2], and non-structural or statistical
textures do not possess this characteristic and may be described by statistical distributions.

In this article, we are concerned with the segmentation of images formed by a composition of
samples of natural non-structural textures, by using a semi-automatic, interactive region-growing
segmentation method, called fuzzy segmentation [3, 4]. The fuzzy segmentation method is used
with adaptive fuzzy affinity functions, whose scales are related to the statistical distribution of
the textural patterns they are associated with, and the Skew divergence to compute how close
two pixels are in texture space.

2. Related Work
One example of an unsupervised texture segmentation technique is the one proposed by Unser
and Eden [5], that extracts local texture properties using local linear transforms, estimates
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local statistics at the output of a filter bank and generates a multi-resolution sequence using
an iterative Gaussian smoothing algorithm. The texture features are then reduced to a single
component that is thresholded to produce the segmentation.

There are also several model-based approaches [6, 7] that deal with the texture segmentation
problem by modeling the intensity field of textures as a Markov or a Gauss-Markov random field
to represent the local spatial dependencies between pixel intensities. However, these techniques
are usually very computationally intensive because they require a large number of iterations to
converge. Lehmann [8] proposed an alternative approach that models two-dimensional textured
images as the concatenation of two one-dimensional hidden Markov auto-regressive (HMM-AR)
models, one for the lines and one for the columns.

3. Fuzzy Segmentation

Because of the general nature of the approach used, we refer to elements of the set V' to be
segmented as spels, which is short for spatial elements [9]. The spels can be pixels of an image
(as in [4]), but they can also be dots in the plane (as in [10]), or any variety of other things,
such as feature vectors (as in [11]). Thus, the theory and algorithm mentioned here can also be
applied to data clustering [12] in general.

The goal is to partition V into a specified number of objects, but in a fuzzy way, by assigning
a spel to a particular object with a grade of membership (a number between 0 and 1) to that
object. In order to do that, we assign, to every ordered pair (¢, d) of spels, a real number not
less than 0 and not greater than 1, which is referred to as the fuzzy connectedness of ¢ to d.

In the original approach [4], fuzzy connectedness is defined in the following general manner.
We call a sequence of spels a chain, and its links are the ordered pairs of consecutive spels in
the sequence. The strength of a link is also a fuzzy concept. We say that the y-strength of a
link is the value of a fuzzy spel affinity function v : V2 — [0,1]. A chain is formed by one or
more links and the -strength of a chain is the -strength of its weakest link; the -strength of
a chain with only one spel in it is 1 by definition.

The fuzzy connectedness from ¢ to d is computed using a fuzzy connectedness function
oy V2 — [0,1] defined by the 1)-strength of the strongest chain from ¢ to d. We can then
define the -connectedness map f of a set V for a seed spel o as the picture formed by the fuzzy
connectedness values of o to ¢ (f(c) = py(0,c)), for all c € V.

An M-semisegmentation of V is a function o that maps each ¢ € V into an (M + 1)-
dimensional vector o¢ = (0§, 0, - -+, 0§,), such that oy is non-negative but not greater than 1,
for each m (1 < m < M), the value of ¢f, is either 0 or 0§, and, for at least one m (1 < m < M),
oy, = o0§. Finally, an M-segmentation of V is an M-semisegmentation such that of > 0 for every
spel ¢ € V. There is an unique M-segmentation asociated with a set V' and sets of seed spels
Vin, for 1 < m < M, that is n fact the segmentation of that set.

For more information related to the fuzzy segmentation algorithm, the reader should refer to
[4], where the FAST-MOFS algorithm [4] is introduced. The FAST-MOFS is a greedy algorithm
that computes the grades of membership of all spels to the objects rounding them to three
decimal places. This allows us to use an array as a priority queue, instead of a heap, thus
lowering the computational complexity of the algorithm [4].

3.1. Fuzzy Segmentation of Textures

The way we specified ¥, and V;;, (1 < m < M) for segmenting an image is the following. We
click on some spels in the image to identify them as belonging to the mth object, and V,, is
formed by these points and their eight neighbors. We then define two Gaussian density functions
with the means and standard deviations computed based on the average values and the absolute
differences of pairs of spels in V;,,. In [4] the fuzzy affinity function between two spels was then
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defined as the average value of these two Gaussians that receive as parameters the average value
of the two spels ¢ and d and the absolute difference between them.

The first term of the fuzzy affinity function described above encodes a local degree of
homogeneity while the second term captures some inhomogeneity information, that can be
construed as a very basic textural information.

In this work, in order to include more information about textural properties in the
segmentation process, we use adaptive fuzzy affinity functions whose neighborhood areas are
selected according to the distribution of the intensities surrounding the selected seed spels. This
selection defines a scale which characterizes the correspondent texture. As mentioned before,
the original fuzzy affinity functions used the intensity values of two spels ¢ and d to compute
the strength of the link connecting ¢ to d. Here, we collect, opposed to what was done in [4],
information of the intensities in the neighborhood area (scale) defined for the texture in question.
For more details about that, the reader should refer to [13].

There are several techniques for detecting the window size that characterizes the texture
periodicity pattern [2] and even orientation [14] of structural textures. However, such area is
not well-defined in the case of non-structural textures, that can exhibit localized distributions
of intensities in smaller scales and very different distributions observed at larger scales.

The algorithm used for choosing the appropriate scale works by computing statistics for
a neighborhood of size 3 x 3 (i.e., with diameter equal to 1) surrounding the seed spels, and
increasing this neighborhood until the differences of the statistics collected on the neighborhoods
of two consecutive sizes are smaller than predefined thresholds. The neighborhood sizes used
for each object can also be part of the user input to the segmentation method.

To give the algorithm a notion of distance between the distributions surrounding two pixels,
i.e., between the histograms of the pixels belonging to the neighborhoods of these two pixels, we
use a measure based on the Kullback-Leibler Divergence [16], namely, the Skew Divergence [15],
that is used to compute how far two probability distributions are, and are respectively given by:

KL | q) = mezogggg, (1)

Slpllq) =KL(q [ ap+ (1 —a)q). (2)

The Skew Divergence (2) circumvents an indetermination problem that happens with the
Kullback-Leibler Divergence (1) when there is an index x such that p(z) > 0 and ¢(x) = 0, and
it does that by mixing the two distributions according to the parameter «.. In the experiments
shown in this paper, this parameter was set to 0.77. Note, from Equations (1) and (2), that both
divergences are asymmetric. The general definition of the fuzzy affinity functions employed in
MOFS does not limit the usage of asymmetric functions, but one can use the average value of
the divergences in both directions as a symmetric measure, if wanted.

4. Results and Discussion
We tested our method on mosaics that were composed by putting together parts of three image
samples of different rocks. Each rock sample has a statistical pattern that is recognizable by
a human, but poses a challenge for segmentation algorithms. The samples and the mosaics
were downloaded from the The Prague Texture Segmentation Data Generator and Benchmark
[17]. Three of the produced mosaics (with 512 x 512 pixels each) can be seen in Figure 1,
alongside their respective segmentations. In these segmentations, the color of one spel codifies
two informations, as the brightness indicates the grade of membership of that spel to the object
indicated by the spel’s hue.

The three segmentations were performed on a personal computer equipped with 2 Intel
Core™ i7 3.07GHz, with 6GB of RAM running Linux, and took between 1.9s and 2.25s, i.e.,
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Figure 1. Examples of mosaics produced by combining two Brodatz Textures (a), (c) and (e),
and their correspondent connectedness maps (b), (d) and (f).

between 7.25us and 8.58us per spel. The accuracy reported for the three mosaics shown are
97.58%, 96.43% and 96.01%. It can be seen from the results shown in Figure 1 that the results
provide good segmentations for all three textures present in the three mosaics.

5. Conclusion
In this article, we showed how the fuzzy segmentation method can be used to segment images
with textural properties by employing adaptive affinity functions and the Skew Divergence.
The adaptive fuzzy affinity functions allows the method to use different neighborhood sizes for
textures with different characteristics, while the Skew Divergence gives a robust measure of
distance between the distributions of the areas surrounding two spels.

As of future work, we are currently working on automatizing the segmentation process for
this specific application, thus allowing the method to work without the need of an user indicating
the seed spels, as well as on extending this method to color images.
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