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Abstract. This paper is the first step of generalization of the previously obtained full
classification of the asymptotic behavior of the probability for Markov chain trajectories for
the case of hidden Markov models. The main goal is to study the power (Zipf) and nonpower
asymptotics of the frequency list of trajectories of hidden Markov frequencys and to obtain
explicit formulae for the exponent of the power asymptotics. We consider several simple classes
of hidden Markov models. We prove that the asymptotics for a hidden Markov model and for
the corresponding Markov chain can be essentially different.

In mathematical linguistics, one of the most widely known frequency laws is the Zipf law [1].
According to this law, there is a power dependence of the probability of the rth word in an
ordered frequency list on r. The exponent in the classical Zipf law equals −1. In recent years,
opportunities for this research became much wider, owing to the appearance of new large data
repositories, in particular, Google Books Ngram corpus [6]. The analysis of large data corpora
shows that the power dependence with an exponent close to −1 can approximately describe
only frequencies of most commonly used words [4]. At the same time, frequencies of the main
and peripheral vocabularies can be approximately described by a power law whose exponent is
modulo greater than 1 (its typical values lie within the interval 1.7–2). Moreover, in languages
with hieroglyphic scripts the asymptotic decrease of frequencies is faster than power law [5].
The development of a model explaining these phenomena is an actual problem.

There were many attempts to explain the frequency distribution of word usage with the help of
probabilistic frequencies of text generation. One has considered both the ”monkey model” with
independent letters, and Markov models.In [2] one describes the dependence of the asymptotic
behavior of the frequency distribution on the structure of the transition probability matrix and
obtains an explicit formula for the exponent. Note that unlike the monkey model [3], where there
is a great abundance (because all words consisting of the same letters have equal probabilities),
in Markov models, owing to dependencies between states, there is no such abundance. We can
observe even a less entropy (and, consequently, a less abundance) in a hidden Markov model
(HMM), where some hidden symbols merge to form the same visible ones. In future, the use
of HMM will allow one to construct more realistic text generation models, taking into account
the syllabic and morphological word structure. Moreover, within HMM one can also take into
account the presence of misprints and mistakes in word corpora (according to [6], up to 30
percent of unique word forms in Google Books Ngram appear as a result of word recognition
errors). Another linguistic application of HMM is the statistics of various sentences. In the
latter case, graphs of Markov chains (MC) represent Chomsky syntactic structures, while HMM
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do their realizations as sentences. Our goal is to study the power and nonpower asymptotics
of the frequency list of trajectories of HMM and to obtain explicit formulae for the power
asymptotics exponent. Note that the value of this exponent appears to be greater than one,
which corresponds to true values, if we estimate the transition probability matrix in accordance
with the word frequencies in Google Books Ngram. In particular, these models with lighter
distribution tails (in comparison with the classical Zipf model with the exponent of −1) better
predict frequencies of peripheral vocabularies and the small quantity of hapax legomena.

Let us give exact definitions. Consider a Markov chain (MC) whose state set is E =
{E0, . . . , En}; here the state E0 is absorbing, while the rest ones are nonrecurrent, i.e., having
started with any state, we finally get at E0. Consider a hidden Markov model (HMM), where each
non-absorbing state is associated with a random variable that takes on values in some alphabet
X = {x1, . . . , xm}; thus we get words representing a sequence of letters of the alphabet X. A
word ends, when we reach the state E0. If the initial distribution a = (a1, . . . , an) is known,
then each word has a certain probability, and the sum of these probabilities equals one. We
are interested in the distribution of probabilities over words, namely, we are interested in
decrease rates of word probabilities in their complete list sorted in the non-increasing order
of probabilities.
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Figure 1. An example of the graph
of an HMM with three states with
a two-letter alphabet, q21 = 1.
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Figure 2. Another example of
the graph of an HMM (modifying
the example shown in Fig. 1), for
which the hidden word is uniquely
defined from the exposed one (see
Theorem 3); here q11 = q32 = 1.

For example, let us consider a HMM, whose graph is given in Fig. 1. Here vertices correspond
to states of the MC, solid arcs do to nonzero elements of the matrix of transition probabilities,
and weights shown next to arcs are values of the corresponding elements of the matrix. Dashed
arcs outgoing from non-absorbing vertices correspond to various variants of values of random
variables associated with vertices, and weights shown next to them are probabilities of taking
on the corresponding values. Evidently, for any non-absorbing vertex the sum of weights of
all outgoing solid arcs, as well as that of all dashed ones, equals one. In particular, in Fig. 1,
q21 = 1. In this example, assuming that at the initial time moment we certainly are situated at
state E2, possible words represent any sequences consisting of an even number of letters of the
alphabet {x1, x2}, where odd positions are necessarily occupied by the symbol x1. In particular,
the probability of the word (x1, x1) equals p21q11p10 + p23q31p30, that of the word (x1, x2) does
p21q12p10 + p23q32p30, and so on.

Introduce some denotations. We are interested in the decrease order of the function p(·),
where p(r) is the probability to obtain the rth word in the sorted list. Let G0 be the graph of
an MC (in Fig. 1 this graph consists of solid arcs), and let G be the subgraph of G0 consisting
of all its vertices and arcs, except the vertex E0 and arcs entering it.

Evidently, if the graph G contains at least one cycle, then (and only in this case) the number
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of words is infinite. We are interested just in this case, namely, in the order of the asymptotics
of the function p(r).

Let PG be a substochastic matrix of transition probabilities of the MC corresponding to the
graph G (i.e., the transition matrix where the absorbing state is not taken into account) and
let PG(β) be obtained from PG by raising each its element to the power β. Earlier in [2] we
considered ordinary MC (rather than HMM), i.e., the case when X = {E1, . . . , En} and each
random variable is a deterministic identical map. We classified all possible variants of essentially
different asymptotics of the function p(r) and consider some techniques for finding parameters
of these asymptotics for MC. In particular, we have proved the following assertion (we use the
standard O-symbols, including the symbol Θ for denoting the asymptotic order and the symbol
Ω for the lower estimate of the order):

Theorem 1 Assume that the initial distribution a is such that the probability to reach (at least
once) each state Ei, i = 1, . . . , n, is greater than zero. Then the following alternatives are
possible:

1. If the graph G contains a vertex which go through to two different simple cycles, then
p(r) = Ω(r−1/β), where β is a real value, with which the greatest modulo eigenvalue of the
matrix PG(β) equals one. Note that such β exists, it is unique and belongs to the interval
(0, 1). Moreover, p(r) = o(r−1/γ) for any γ > β. Note that the exact power order (i.e., the
equality p(r) = Θ(r−1/β)) takes place if and only if any simple path in the graph G belongs
to no more than one strongly connected component H of this graph, for which the matrix
PH(β) has unit eigenvalue.

2. If the graph G contains cycles, and each vertex of the graph G belongs to no more than one
simple cycle, then p(r) = Ω(αr) and p(r) = o(r−λ), where λ is any positive number and
α ∈ (0, 1) is a constant depending on the matrix P (i.e., p(r) is decreasing faster than any
power function, but slower than some exponential one). Moreover, the exact exponential
asymptotics (p(r) = Θ(exp (−νr))) for some ν > 0 (see [2] for the calculation of ν) takes
place if and only if any path in the graph G goes through vertices of no more than one cycle.

Thus, for example, for a Markov chain with the graph G given in Fig. 1 (we pay no attention
to dashed arcs) there is only one strongly connected component p(r) = Θ(r−1/β), where β is the

root of the equation pβ12p
β
21 + pβ23p

β
32 = 1. The power asymptotics is typical; it defines the Zipf

law [1] for frequencies of the occurrence of various words. Theorem 1 implies that if the matrix
of transition probabilities is very sparse (more exactly, conditions of Theorem 1.2 are fulfilled),
then p(r) is decreasing faster than the power function. This property is valid for hieroglyphic
scripts, in particular, for the Chinese language [5].

For a vertex v we understand a syllable w(v) as a part of a word in an HMM which can be
obtained by tracing some simple cycle in the graph G beginning at v. For example, for the HMM
illustrated in Fig. 1 there are only two syllables in the form w(E2), namely, (x1, x1) and (x1, x2).
We say that syllables w1(v) and w2(v) are essentially distinct, if no (multiple) concatenation of
one syllable gives another one. For example, all letterwise distinct syllables of the same length
are essentially distinct, while syllables composed of letters of the Latin alphabet (o, l, e) and
(o, l, e, o, l, e, o, l, e) are not so.

Theorem 2 Assume that the initial distribution a is such that the probability to reach (at least
once) each state Ei, i = 1, . . . , n, is greater than zero. For an HMM we have the bound
p(r) = Ω(r−β

′
) for certain β′ if and only if there exists a vertex v, for which one can find

at least two essentially distinct syllables w1(v) and w2(v).

Evidently, conditions of Theorem 2 are fulfilled for the HMM illustrated in Fig. 1.
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Note that the fulfillment of conditions of Theorem 1.1 does not guarantee the fulfillment of
conditions of Theorem 2. Similarly, the fulfillment of conditions of Theorem 2 does not guarantee
the fulfillment of conditions of Theorem 1.1, i.e., the power order of the asymptotics of “exposed”
and “hidden” words, generally speaking, is inherited neither from MC to HMM, nor vice versa.

Let us now consider the question on the exact order of the power asymptotics. Denote by
the symbol Q a stochastic n × m-matrix, whose elements qij (i ∈ {1, . . . , n}, j ∈ {1, . . . ,m})
are probabilities that the random variable corresponding to the state Ei takes on the value
xj . Denote by P̂ (β) the n × n-matrix, whose elements p̂ij (i, j ∈ {1, . . . , n}) obey the formula

p̂ij = pβij
∑m
k=1 q

β
jk.

Theorem 3 Let conditions of Theorem 2 be fulfilled. For simplicity, we assume that the graph G
consists of one strongly connected component. In addition, we assume that (with the considered
initial distribution) for each exposed word w (i.e., a sequence of letters of the alphabet X or, in
other words, values of random variables associated with states Ei), the realizing it hidden word
(i.e., the set of states Ei visited by us) is defined uniquely. Then p(r) = Θ(r−1/β), where β is

a real value, with which the greatest modulo eigenvalue of the matrix P̂ (β) equals one (it exists
and belongs to the interval (0, 1)).

Note that the HMM shown in Fig. 1 does not satisfy conditions of Theorem 3; for example,
one can obtain the word (x1, x1) in two ways, namely, with the help of either the hidden word
(E2, E1) or that (E2, E3). We can satisfy conditions of Theorem 3 by slightly changing directions
of dashed arcs as is shown in Fig. 2. In this case any exposed word, whose 2lth position is
occupied by x1, corresponds to a hidden word, whose 2lth position is occupied by E1; any
exposed word, whose 2lth position is occupied by x2, corresponds to a hidden word, whose 2lth
position is occupied by E3. In addition, odd positions in a hidden word are occupied by E2. In
this case by Theorem 3 we have p(r) = Θ(r−1/β), where β is defined from the equation

(pβ12p
β
21 + pβ23p

β
32)(q

β
21 + qβ22) = 1.

The condition for recovering a hidden word from an exposed one seems to be not very strong,
however, it is just the case (due to the abundance of the language information) for the statistics
of recognized (with errors) wordforms in the Google Books repository.

Corollary 1 Assume that an HMM satisfies conditions of Theorem 2 (including the possibility
to reach each state) and for hidden words its MC has the exponential asymptotics. Then
p(r) = Θ(r−1/β), where β is a real value, with which the greatest modulo eigenvalue of the

matrix P̂ (β) equals one.

Let us now consider approaches to the calculation of β in the case, when the recovery of a
hidden word from an exposed one may appear to be impossible. Let w(v) be some syllable in
an HMM; assume that one can obtain this syllable in several ways when tracing a cycle (cycles)
in the graph G, beginning at a vertex v. We understand the weight of such a tracing c as the
product of weights of all edges that enter in the cycle c multiplied by the product of probabilities
of the corresponding values from the alphabet X in the corresponding state Ei. We understand
the weight of a syllable Pr(w(v)) as the sum of weights calculated over all such tracings.

For example, for the HMM illustrated in Fig. 1 there are two syllables of type w(E2),
namely, (x1, x1) and (x1, x2); we have Pr(x1, x1) = p21q11p12 + p23q31p32, while Pr(x1, x2) =
p21q12p12 + p23q32p32. For the HMM illustrated in Fig. 2 there are four syllables, namely, all
possible two-letter combinations.

Theorem 4 Let conditions of Theorem 2 be fulfilled. Moreover, we assume that all cycles in the
graph G contain some vertex v and all letterwise distinct syllables w(v) are essentially distinct.
Then p(r) = Ω(r−1/β), where β is determined as the root of the equation

∑
Pr(w(v))β = 1, and

the sum is calculated over all possible syllables w(v).
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Theorems 2, 3, and 4 cover particular cases of rather sparse matrices P or Q. Note that even
in this case the asymptotics of the frequency list of hidden and visible states can be essentially
different. Thus, in Theorem 3 it is proved that the exponent of the power asymptotics of
visible states can be determined with the help of the matrix P ′(β), while the exponent of the
power asymptotics of hidden states (see Theorem 1) can be determined with the help of the

matrix P (β). Since, evidently, p̂ij ≥ pβij , for hidden states this exponent is (modulo) not less
than that for visible ones (we assume that hidden states also have power asymptotics). An
essentially different asymptotic behavior is also possible (e.g., Corollary 1). In a general case,
frequencies of hidden words do not necessarily decrease faster than those of visible ones. Thus,
for example, under conditions of Theorem 4, if several hidden syllables correspond to the same
visible ones, then exponents of the power asymptotics satisfy the converse inequality.

Figure 3. Examples of the frequency graph of an HMM and the corresponding
MC. The total number of generated (nonunique) words equals 25 million.

In Fig. 3 we represent results of simulation experiments that demonstrate the essential
distinction of asymptotics of frequencies of visible and hidden words; everywhere the number

of hidden and visible states equals three. In case A, PG =

(
0.0007 0.007 0.6823
0.3493 0.0014 0.3493
0.007 0.6923 0.0007

)
, Q =(

0.5 0.3 0.2
0.3 0.5 0.2
0.2 0.3 0.5

)
, in case B, PG =

(
0 0.5 0
0 0 0.5
0.5 0 0

)
, Q =

(
0.75 0.15 0.1
0.15 0.75 0.1
0.1 0.15 0.75

)
. In case A, both

the frequencies of hidden words and visible ones have power asymptotics, but their exponents
are essentially different (they are calculated in accordance with Theorem 1 and results of
the simulation experiment, correspondingly). In case B, frequencies of hidden words decrease
exponentially, while those of visible ones have power asymptotics.

Thus, we have established explicit formulae for exponents of the power asymptotics for some
variants of HMM. We show that asymptotics of frequency lists of an HMM and the corresponding
MC can be essentially different.
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