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Abstract.

The aims of this work were to establish a program to fit NTCP models to clinical data with
multiple toxicity endpoints, to test the method using a realistic test dataset, to compare three
methods for estimating confidence intervals for the fitted parameters and to characterise the
speed and performance of the program.

1. Introduction

The QUANTEC reports [1] have summarised and reported data on radiation induced
complication probabilities in multiple organs. The QUANTEC series emphasised the importance
of collecting dosimetry and outcome data to enable more accurate modelling of normal tissue
complication probability (NTCP). This data has mainly been collected in the context of clinical
trials in the past but ideally clinics would record detailed and accurate data for all patients
during routine treatment operations allowing a “data mining” approach to development of more
accurate NTCP models [2]. Various NTCP models exist but one of the most commonly applied
models is the Lyman, Kutcher, Burman (LKB) model [3]. The LKB model describes the NTCP
in terms of three model parameters and the dose received by the organ of interest. When the
model parameters are known and the dose volume histogram data is available the calculation of
the NTCP is trivial and can be performed in a few seconds using a spreadsheet. Determining the
appropriate values of the model parameters from a large set of patient dose volume histograms
and observed toxicities is significantly more computationally intensive. The maximum likelihood
estimation (MLE) method is used to identify the set of parameter values which best describes
the observed clinical outcomes. The estimated LKB model parameters are drawn from some
distribution of possible values that describe the patient group and it is necessary to determine
the confidence interval around these values. There are several methods available to determine
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the confidence intervals including the profile likelihood method as well as Monte Carlo based
techniques such as parametric and non parametric bootstrapping. This paper describes the
design and testing of a program to determine LKB model parameters from a number of test data
sets and compares parameter confidence intervals derived using parametric and non parametric
bootstrapping.

2. Methods

2.1. Lyman - Kutcher - Burman Model

The LKB model [3] is used to generate a normal tissue complication probability based on the
dose received by the normal tissue of interest. The dose volume histogram (DVH) for the nor-
mal tissue is collapsed into a single dose parameter referred to as the Equivalent Uniform Dose
(EUD). Conceptually the EUD may be considered as the uniform dose to a particular organ that
would yield the same outcome or toxicity endpoint. The Equivalent Uniform Dose is calculated
as follows:

EUD =
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1 Nyozels %
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The dose in each voxel of the organ is raised to the power of a (an alternative representation
uses n = 1/a) and summed over all voxels. The parameter a represents the seriality of the tissue
response to radiation. When a is large the overall EUD is dominated by the hottest voxels (serial
type response). When a is small the EUD is more influenced by the total volume irradiated
(parallel type response). The NTCP is then given by:
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Where Dsj represents the dose to the organ that results in a 50% chance of a particular
complication and m defines the slope of the assumed sigmoid dose response curve of the tissue.

NTCP =

2.2. Finding a, m and Dsg using Maximum Likelihood Estimation

Given a sample of patients where the DVHs for the organ at risk of complication are known and
the observed incidence of a particular complication is recorded it is possible to make an estimate
of a, m and Dsg. To achieve this NTCP values for each patient in the population are calculated
for a range of a, m and Dsg values. For each combination of a, m and Dsg the NTCPs for each
patient are compared to the observed toxicities and the log-likelihood (LLH) is calculated [4].
The log likelihood is a measure of agreement between the observed toxicities and the calculated
NTCPs and is found as follows:

LLH = Y  In(NTCP(a,m,Dsy))+ Y_ In(1— NTCP(a,m,Ds)) (3)
tox=1 tox=0

The first term is summed over all patients where a complication is observed and the second
is summed over all patients where no complication is observed. The combination of a, m and
D5y which yields the maximum value of the log-likelihood is the parameter set which best fits
the patient data being used. The search for the maximum likelihood can be approached with
a smart optimisation algorithm or alternatively by brute force searching through a large grid

parameter space. In this work we took the brute force approach.
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2.8. Multiple Complication Endpoints

Once suitably large arrays of a, m, D5y and NTCP are calculated these are independent of the
actual observed endpoint and can be used to find the MLE of the parameters for any observed
complications. This calculation efficiency increases with the number of end points fitted.

2.4. Finding the Confidence Intervals

Confidence intervals are commonly determined using the profile likelihood method. This involves
finding the maximum log-likelihood and then varying each parameter until the log-likelihood is
decreased by an amount equal to half the critical value of the x?(1) distribution at the desired
significance level. The search is repeated for each parameter and this yields the respective
confidence intervals [5]. A more general but computationally intensive approach also commonly
used in NTCP modelling is non-parametric bootstrapping [6]. This involves randomly selecting
a population of patients from the data set (with replacement) and then finding the a, m, and Dsg
again. This is repeated many times (e.g. 1000 - 2000) and yields a distribution of a, m, and Dsg
values. The confidence interval is determined by looking at the value of each parameter at the
percentile cut-off for the confidence interval required in each distribution. This approach relies
on the intrinsic distribution of the patient sample itself. It is robust and the main potential
weakness is if the patient group does not adequately cover the whole parameters space. An
alternative approach is to use parametric bootstrapping. This assumes that the fitted model is
a good representation of the data (and the real population it represents). Therefore a synthesised
patient population can be derived from the model rather than the original patient data set. In
practice this is achieved by calculating the NTCP for each patient in the original data set using
the optimised a, m, and D5y values. To generate a new patient population, a random number
(r,) between 0 and 1 is generated for each patient. If r, < NTCP patients are assigned a
complication. If r, > NTCP the patients are assigned no complication. The values of a,
m, and Dsg for the new synthesised patient population are found using MLE. This process is
repeated many times (1000-2000) and the confidence intervals are determined from the resulting
distributions. The parametric approach relies on the model being a good fit to the true patient
population.

2.5. Implementation

The MLE optimisation and three different confidence interval estimation approaches were
programmed using MATLAB (version 7.12.0, The Mathworks Inc., 2011). The code was run on
a HP server with 64 cores (four 16 core CPUs) running at 2.6 GHz and with 256 GB of RAM.
The array containing the grid of a, m, D5y and NTCP for each patient was calculated once. All
subsequent MLE searches were performed against this array. Since this array is accessed 1000’s
of times in the bootstrapping routines using a large precalculated grid is advantageous. The
search grid was defined so that a had a range from 1072 to 10? in 61 bins equally spaced on a
logarithmic scale. The dose parameter D5 spanned from 0-150 Gy in 1 Gy increments. The
NTCP slope parameter m spanned from 0.01 to 2 in 47 bins. To perform the non parametric
bootstrapping 2000 re-sampled populations were broken up into 50 batches of 40 populations
thereby using 50 of the 64 cores on the server. The parametric bootstrapping was performed in
a similar way with 2000 synthesised patient populations solved across 50 cores.

2.6. Fvaluation with a Test Data Set

Three test data sets were based on DVHs and toxicities from 738 patients in the TROG 03.04
RADAR clinical trial [7, 8]. For the purposes of the current work the data set was treated simply
as a realistic distribution of DVHs. The DVHs for all patients were used in a single data set
without consideration of any other details related to the trial. The test set model parameters
derived and used in this work do not have any clinical significance beyond the testing described
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here and readers are referred to references [7, 8] for more details of the RADAR study itself.
Three separate complication endpoints were chosen giving a range of parameter values and
numbers of patients with the complication.

3. Results

The test data sets consisted of anal canal and anorectal dose volume histograms from 738
patients in the RADAR data set. All patients for which complete data was available were
included. The data set therefore incorporates a reasonably heterogeneous set of patients from
all arms of the study with prescribed doses ranging from 66 to 74 Gy. Using various techniques.
The complication incidence for the three test data sets was 126/738, 309/738 and 126/138 for
test sets 1, 2 and 3 respectively.

3.1. Confidence Intervals

In all cases the confidence interval derived using the likelihood profile method is smaller than
either of the bootstrapping methods for deriving confidence intervals. The confidence interval
derived from the non parametric bootstrap was always larger than the confidence interval based
on the parametric bootstrap. This trend is expected since the likelihood profile confidence inter-
val represents the MLE fit to the specific data set. With the parametric bootstrap the possibility
of different outcomes for each member of the patient test population is exercised but with the
inherent assumption that the NTCP model accurately describes the distribution of the actual
data. Whereas the non parametric model which re-samples the existing patient population does
not assume the model accurately describes the patient distributions. Examples of the a, m and
D5 distributions found for the two different bootstrap methods are shown in figures below.

Table 1. Model parameter values and confidence intervals (68%) for each calculated by three different
methods each of the test data sets.

a D50 m
Test Set 1 0.6 69 0.6
likelyhood profile CI  0.001-0.7  66-79 0.6-0.65
parametric CI 0.034-0.2  62-81.5 0.525-0.7
non parameteric CI ~ 0.034-3.5  61-86.5 0.47-0.71
Test Set 2 3.2 55 0.55
likelyhood profile CI ~ 2-5 52-59 0.45-0.85
parametric CI 1.46-6.24  50.3-60.6 0.41-0.94
non parameteric CI ~ 0.88-7.24  47.6-61.4 0.37-1.03
Test Set 3 3.2 77 0.4
likelyhood profile CI ~ 2-5 72-88 0.3-0.5
parametric CI 1.17-7.15  70.7-93.5 0.32-0.61

non parameteric CI ~ 1.21-11.73  69.9-94.7 0.26-0.61

3.2. Computation Time

Our test data sets had 738 patients and the MLE search was performed over a very modest
grid of a, m, Dsg values of dimensions (61 x 150 x 47). To construct the array of EUD and
NTCPs required for each patient with this search grid takes approximately 30 minutes on our
hardware. A single MLE solution of a, m, Dsg for all three of the test data sets took 150
seconds on a single core. Therefore to perform a MLE solution for 2000 patient populations
takes approximately 3 x 10° seconds or 83 hours. When this is run on 50 cores simultaneously
(without memory sharing) the calculations can be completed in approximately 1 h 40 minutes.
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Figure 1. Parametric and Non Parametric bootstrapping for the parameters “a”, “Dsy” and
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There was no difference observed in the computing time (150 £ 5 seconds per iteration) required
for the parametric versus the non parametric bootstrapping techniques so in our implementation
neither has any advantage over the other in this respect. At these speeds of execution and relying
on multiple cores for processing it is possible to analyse a data set with approximately 750
patients and derive NTCP parameters for 20 different complication end points in an overnight
batch taking approximately 12 hours.

4. Discussion

4.1. Grid search considerations

Determination of LKB parameters calculating the EUD and NTCP on the fly for a large number
of patients and end points is very inefficient. A pre-calculated grid is preferred. The span of the
grid is important so that the search space contains any real MLE maxima. Failure to meet this
requirement is indicated by overpopulated bins at the extremes of the bootstrap distributions.
One shortcoming of our implementation of the “brute force” grid search technique is that it does
not easily lend itself to adaptive grid resizing as this would require further NTCP calculations on
the fly as the MLE converges on a maximum value. A smarter (no grid) optimisation procedure
could give better performance so long as it converges quickly (i.e. the total number of NTCP
calculations for all bootstrapping and all endpoints is significantly less than the 4.3 x 10° array
entries used for the grid search).

4.2. Parametric or non parametric bootstrap?

This work shows that the choice of either parametric bootstrapping or non-parametric
bootstrapping for confidence intervals in NTCP models is probably not critical in most cases.
The non parametric approach is used in most publications related to confidence intervals for
NTCP models. This assumes the sample of patients in the study group is representative of the
wider population to whom the model would be applied. The bootstrapping procedure should give
a good indication of the distribution the parameter could have for that population. In contrast
to this the parametric approach results in a distribution of parameter values reflecting the
model prediction for these values not the actual sample set distribution. This will give narrower
confidence intervals than the more pessimistic confidence intervals from the non parametric
bootstrap. Derivation of the confidence intervals was based on a simple quantile approach
however other approaches to determining the confidence intervals are described in the statistics
literature [6]. These are recommended as more rigorous than our simple approach and should
be considered for future implementation. A parametric approach is invaluable for predicting
distributions of NTCPs for a set of patients and comparing how well different models fit the
patient data [9, 10]. Either technique will provide a more conservative estimate of the confidence
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intervals for an NTCP model than the profile likelihood calculation and in our implementation
there was virtually no difference in the computing time.

5. Conclusions

This simple exercise has demonstrated that in a small number of test data sets parametric and
non parametric bootstrapping can both be used to generate comparable confidence intervals for
NTCP model parameters. Both approaches give more information about parameter distributions
than the simple but less intensive likelihood profile method. There is no difference in calculation
time in our implementation of the calculations. Further refinement including implementation
of an adaptive grid spacing would improve accuracy of the MLE optimisation but this is
difficult to incorporate into a simple grid search algorithm without speed penalties. Additional
functionalities to allow cross validation of fitted models and development of well characterised
data sets as suggested by other authors [11] should also be implemented.
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