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Abstract.  The purpose of this review is to highlight the critical issues of 

radiobiological models, particularly as they apply to clinical radiation therapy. 

Developing models of radiation responses has a long history that continues to 

the present time.  Many different models have been proposed, but in the field 

of radiation oncology, the linear-quadratic (LQ) model has had the most 

impact on the design of treatment protocols.  Questions have been raised as to 

the value of the LQ model given that the biological assumption underlying it 

has been challenged by molecular analyses of cell and tissue responses to 

radiation.  There are also questions as to use of the LQ model for 

hypofractionation, especially for high dose treatments using a single fraction.  

While the LQ model might over-estimate the effects of large radiation dose 

fractions, there is insufficient information to fully justify the adoption of 

alternative models.  However, there is increasing evidence in the literature that 

non-targeted and other indirect effects of radiation sometimes produce 

substantial deviations from LQ-like dose-response curves.  As preclinical and 

clinical hypofractionation studies accumulate, new or refined dose-response 

models that incorporate high-dose/fraction non-targeted and indirect effects 

may be required, but for now the LQ model remains a simple, useful tool to 

guide the design of treatment protocols. 

1. Review

Radiation-induced toxicity in tumors and normal tissues arises from the interplay of multiple 

integrated pathways.  Traditionally, our understanding of these pathways came from 

reductive methods where individual pathways were dissected and analyzed.  The creation and 

testing of alternative and competing models that integrate multiple pathways is an important 

adjunct to mechanistic laboratory and preclinical studies of radiation response.  The 

formulation of useful and parsimonious dose-response models at the multi-cellular or tissue 

level are also needed to guide the treatment planning process and for the retrospective 

analysis of clinical data.  In practical terms, a parsimonious dose-response model is often the 

one that minimizes the number of adjustable (fitted) parameters. 

Modeling radiation effects has a long history going back to target theory, developed by 

Lea in 1946 and published in 1955 [1], the linear-quadratic (LQ) model of Chadwick and 

Leenhouts [2] in 1974, and the dual action theory of Kellerer and Rossi [3] in 1978.  These 

models were originally developed to help understand the nature of the initial radiation-

induced molecular or cellular damage that leads to cytotoxicity, but none of these models 

fully account for the complexity and range of possible biological responses initiated by 

radiation-induced DNA damage [4, 5].  Neither do they consider the different modes of 

radiation-induced cell death [5].  New models of radiation responses that take into account 

some of our growing understanding about radiation-induced effects continue to be proposed 
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(see for example [6-8]).   Most of these alternative and competing models often reduce to the 

LQ for low doses or low dose rates [9], which is surprising given the complexity of cellular 

radiation responses.   

The LQ model often captures key aspects of how reproductive cell death changes with 

dose and only has two adjustable parameters ( and /).  It continues to be a popular choice 

to design treatments and evaluate clinical outcomes.  Perhaps the most often used LQ-based 

approach to estimate clinical radiation effectiveness is the calculation of Biologically 

Equivalent (or Effective) Dose (BED) [10].  BED is defined as -ln(S)/, where S denotes the 

fraction of the cells that remain viable in the reproductive sense after treatment and  is the 

LQ model parameter related to the induction of lethal damage by individual radiation tracks.  

For a radiation treatment delivered as n daily fractions of size d (in Gy), the BED is: 

BED = nd[1+ d/()] 

Here, the LQ parameter  quantifies the overall sensitivity of a cell to changes in 

fraction size.  Although estimates of  are sometimes derived from in vitro or in vivo 

studies, the most appropriate way to estimate  is to derive an estimate from clinical dose-

response data.  Regardless, estimates of  are specific to the normal tissue or tumor of 

interest.  Historically, BED has mainly been used for designing and comparing treatments 

that vary in fraction number and/or the dose per fraction [10].  The advent and increasing use 

of hypofractionation with its short treatment courses, reduced fraction number and large dose 

per fraction (hypofractionation) has raised questions about the applicability of the LQ model 

and BED concept. 

The hypothesized basis for the successful use of fractionation in radiation therapy is that 

fractionation provides time for repair of sublethal damage and tissue repopulation, thus 

reducing the impact of radiation dose in normal tissues while allowing for reoxygenation and 

reassortment in the cell cycle in tumor cells, both of which tend to increase tumor radiation 

sensitivity.  Improvements in radiation targeting such as the use of SBRT (Stereotactic Body 

Radiation Therapy) now provide the opportunity to reduce the volume of normal tissue 

exposed to radiation, increase dose to tumors, and reduce fraction number.  The ability to 

avoid critical normal tissue structures allows for the delivery of very high radiation doses to 

tumors in 1 or just a handful of fractions.  A technical question that has arisen is whether 

traditional modeling with BED accurately predicts the clinical response to high dose/fraction 

and reduced fraction number.   

It has been suggested that the LQ model tends to over-estimate BED when high dose 

fractions are used [11, 12].  The LQ model predicts a continuous bending down of the 

survival curve at high doses, while in vitro measurements indicate a linear-quadratic-linear 

(LQL) behavior, i.e., the cell killing is exponential for small and large doses and non-linear 

for intermediate doses.  To address the issue of over-estimation of biological effects, 

modifications to traditional radiation models have been proposed.  Guerrero and Li [11] used 

the lethal-potentially lethal (LPL) model proposed by Curtis [7] to motivate the derivation of 

a high-dose correction to the standard LQ model.  Park et al. [12] proposed a hybridization of 

the LQ and target theory models to create a Universal Survival Curve (USC) model.  Mehta 

et al. [13] did a comparative analysis of stage I non-small cell lung cancer treatments using 

BED and USC.  The studies of Mehta et al. [13] included clinical data for both SBRT and 3-
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dimensional conformal RT (3D-CRT), and fraction number ranged from 1 to more than 10. 

The authors reported that while BED was larger than the USC model for equivalent tumor 

control, the clinical significance of this difference for tumor control probabilities greater than 

90% was minimal.  Thus, while it is possible to account for the problem of BED over-

estimation in the LQ model at high doses, the need for such corrections is so far not 

compelling, especially when one considers the additional fitted parameters introduced by 

other models.  Future studies might lead to a change in this conclusion.. 

Another question that has been raised by hypofractionation studies is whether the excellent 

clinical outcomes associated with hypofractionation are due to the delivery of larger 

(biological) doses with SBRT or to new biology that becomes especially significant when the 

dose per fraction is large.  Brown and colleagues [14] addressed this question in a discussion 

of the data presented in Mehta et al. [13].  They argued that the observed monotonic 

relationship between the tumor control probability and BED is consistent with dose escalation 

as the primary factor underlying the observed clinical responses; they found no difference in 

tumor control for single fraction SBRT, multifraction SBRT or 3D-CRT for treatments that 

deliver the same BED. 

In contrast to the observations of Mehta et al. [13] and Brown et al. [14], Zelefsky et al. 

[15] reported on tumor local progression-free outcomes after treatment with single-dose or 

hypofractionated regimens for extracranial metastases from renal cell primary tumors.  The 

authors reported 3-year progression-free survival rates of 88% for single doses greater than 

24 Gy and 17% for hypofractionated doses (total doses ranged from 20 Gy to 60 Gy).  In this 

example, BED for the single-dose treatment was much less than BED for hypofractionation.  

Single doses less than 24 Gy (18-22 Gy) had much lower 3-year survival rates (21%) than 

that observed for the 24 Gy single dose (88%), suggesting a dose threshold for some radiation 

effect that influences this clinical endpoint.  The work from Zelefsky, Fuks, Kolesnick, and 

colleagues [16-18, 15] suggests that, at least in their clinical model, the biological 

mechanisms underpinning low dose radiation effects, i.e., the dose range in which target 

theory and the LQ model are most appropriate (accurate), may differ in substantial ways from 

high dose biology mechanisms.  

Target theory and the LQ model are largely premised on the hypothesis that only those 

cells that are directly irradiated (damaged) by radiation manifest a response.  However, there 

is growing evidence that non-targeted and indirect effects may play an important role in high 

dose tumor biology [19-23].  Moreover, the non-targeted and indirect effects of radiation do 

not necessarily show the same dose response characteristics traditionally observed in cell 

survival experiments.   

Effects on tumor microvasculature and immune responses following radiation exposure 

are two examples of indirect effects that might not be explained by BED.  Fuks, Kolesnick, 

and colleagues [16-18] emphasize the importance of ceramide-mediated endothelial cell 

apoptosis of tumor microvasculature as an indirect regulator of radiation-induced tumor cell 

toxicity that might account for the apparent dose threshold reported in Zelefsky et al. [15].   

Abscopal effects, where significant tissue responses are observed at sites far from the 

radiation-targeted tumor, are another type of indirect radiation effect.  Abscopal effects have 

been associated with immune response stimulation [24-28].  In fact, immune response is 

important for local control following radiation exposure.  Stone et al. [29] reported many 
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years ago that the dose needed to control tumors (TCD50) was twice as high in mouse models 

that lack T cells.  Demaria, Formenti and their colleagues have published extensively on the 

role of radiation as an immunological adjuvant [30, 24, 31, 5].  In their studies, combining 

radiation treatment of one tumor with anti-CTLA-4 antibody to overcome T cell tolerance led 

to significant growth inhibition both in the irradiated tumor and a distant unirradiated tumor 

[24].  In a review of the importance of dose and fractionation on immune response, Demaria 

and Formenti [30] reported that single doses of radiation can induce an antitumor immune 

response in a dose-dependent manner, but there is no consensus yet on the shape of the dose 

response or type of cell inactivation mechanism required for that stimulation.  As for 

fractionation, while Dewan et al. [24] reported that fractionation was more effective than 

single doses in inducing the immune-mediated abscopal effect, in their review on this subject, 

Demaria and Formenti [30] note that other investigators find that single doses are more 

effective than fractionated doses.  Use of different tumor models might explain the 

discrepancies between different publications in terms of dose and fractionation dependence of 

immune stimulation.  What is important for this discussion is that the immune stimulation is a 

non-targeted, indirect effect of radiation that is unlikely to show an LQ dose response.    

2. Conclusion

It is important to remember that target theory and the LQ model ultimately provide 

descriptions of phenomena rather than an explicit model of specific biological mechanisms or 

pathways.  As operational tools, they are useful models to guide and compare the effects of 

fractionated radiation treatments.  Because of technological improvements in our ability to 

deliver highly conformal doses to tumor targets while minimizing the dose to normal tissue, it 

appears likely that radiation oncology is rapidly moving towards the use of treatments 

delivered in a single or a few fractions.  Although the LQ is likely to remain a useful model 

for the analysis of clinical outcomes and for guiding the refinement of treatment protocols, 

caution needs to be exercised in the application of the LQ to large dose per fraction 

treatments.  In particular, there is increasing evidence that the success of high dose per 

fraction treatments may be due more to non-targeted or indirect radiation effects than to 

classic radiobiological mechanisms motivating the LQ and target theory.  It can be argued 

that, when applied to clinical data, the LQ implicitly includes some of the indirect effects of 

radiation.  If the LQ model fits the clinical data as suggested [14], it is possible to claim that 

all of the relevant mechanisms underlying the clinical observation are included (implicitly) in 

the model.  Additional laboratory and preclinical studies are needed to test this hypothesis. 
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