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Abstract. We report on effects from the geometrical shape of the guiding channels on the ion 
transmission profile. We find that capillaries of rhombic cross section produce rectangular 
shaped ion transmission profiles and, vice versa, capillaries of rectangular geometry give a 
rhombic beam shape. Our trajectory simulations for the incidence of 14-keV Ne7+ ions give 
clear evidence that the observed effect is due to the image forces experienced by the 
transmitting ions. They gain transverse energy due the image charge attraction towards the 
inner surfaces of the capillary. This leads to a defocusing of the ions leaving the capillaries. 
Due to the blocking of large deflection angles at the exit of the capillary, the transmitted ion 
beam is tailored into certain geometrical patterns. 

1.  Introduction 
The transport of charged-particles through nanocapillaries has been focused for the past decade due to 
that the fabrication of membranes with nanosized capillaries in various materials and of various 
geometrical cross sections became possible [1-27]. It started with the discovery of the so-called 
“guiding effect” when transmitting ions through nanocapillaries in polyethylene terephthalate (PET) 
membranes [4]. It was found that the angular distributions of transmitted ions were centered around 
the direction of the capillary axes when the capillaries are tilted by an angle larger than that where they 
are geometrically transparent to the ion beam [4]. There is no significant energy loss or charge 
exchange in the bulk of the transmitted ions. Ions follow along the capillary and exit parallel to the 
channel orientation, independent of their entrance angles. This is of great interest for new ion-beam 
optics. The phenomenon is explained by the deposition of charges on the insulating capillary walls due 
to initial ion impact. Subsequent ions avoid close collisions and are then guided through the capillaries, 
in a manner similar to the channeling of particles in a crystal lattice potential. The formation of the 
guiding potential is, however, a time dependent process. A stationary stage of transmission is achieved 
after the charge deposition from incident ions and the draining of it through various discharge 
channels are in equilibrium. It has been found that a small number of charge patches, sequentially 
positioned on the capillary walls by the charging-up process, is guiding the ions through 
nanocapillaries [10-13]. 

The guiding effect is very effective with slow highly-charged ions (HCIs) and has been observed 
for millions of capillaries in various insulating materials such as in PET [4, 12-13, 22, 26], SiO2 [8-11], 
Al2O3 [14-17], and polycarbonate (PC) [25-27] membranes. All previous studies on guiding of HCI 
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through insulating nanocapillaries have utilized capillaries of circular cross-sections. There the shape 
of the angular distribution of transmitted ions is only determined by the aspect ratio and the tilt angle 
of the capillaries with respect to the beam. We have revealed influences from the geometrical shape of 
the guiding channels on the ion transmission profile, when breaking the rotational symmetry with 
nanocapillaries of rhombic and rectangular cross sections [28-29]. It was found that the rhombic 
capillaries give a rectangular pattern and complementary, the rectangular capillaries produce a 
rhombic pattern [28].  

In order to clarify the role of both the image force and the deposited charge in the beam tailoring 
effect, we measured the time evolution of the transmitted angular distributions during charge-up, 
starting with uncharged nanocapillaries. The starting phase of the angular distributions was recorded.  
The immediate onset of the tailored transmitted angular distribution as well as the trajectory 
simulations showed the dominant role of the image force, experienced instantaneously by the 
transmitting ions inside nanocapillaries. In this presentation, the role of the image charge in the 
tailoring of ion beams is discussed in more details. We show that the image force is deflecting the ion 
beam in the transverse direction and therefore leads to a defocusing. The larger deflection angles of 
the transmitted ions in the angular distributions correspond to the larger transverse energy gains of the 
transmitted ions due the image charge effect. At the exit of the capillary the transmitted ions with large 
deflection angles are blocked and this leads to the tailoring. This suggests defocusing of the ions by 
the image force also in the circular capillaries and sheds light on the broadening of the angular 
distributions, seen earlier in the guiding effect [4, 7, 9, 12, 13, 16, 26].  

2.  Sample preparations and experiments 
Membranes with nanocapillaries were prepared by exposing 20-μm thick muscovite and 10-μm thick 
phlogopite mica wafers to 2.3-GeV Pb and 1.4-GeV Xe ions, respectively. The irradiation was 
performed under normal beam incidence at the linear accelerator UNILAC of the GSI Helmholtz 
Centre applying a fluence of 5×107 ions/cm2. The projectiles pass through the entire thickness of the 
samples and produce latent tracks of few nanometers in diameter [30]. The irradiated samples were 
then etched at room temperature in a 20% aqueous solution of hydrofluoric acid, the muscovite for 10 
minutes and the phlogopite mica for 3 minutes. In contrast to round shaped channels in isotropic 
polymers, the crystal-orientation dependent etching rates lead to a rhombic cross section in muscovite 
mica and a rectangular cross section in phlogopite mica with the axes of all nanocapillaries being 
aligned along the same orientation as shown by scanning electron microscopy (SEM) (figure 1). 

 

 
Figure 1 (color online). SEM images of track-etched mica membranes with nanocapillaries of (a) 
rhombic and (b) rectangular cross sections and (c) a schematic view of the setup for the ion 
transmission experiments. 

 
The rhombic channels in muscovite mica have acute angles of 60° and obtuse angles of 120° with a 

long axis of 248 nm and a short axis of 142 nm, and the channel length of 20 μm gives the geometrical 
opening angle of 0.4° for the short axis. The rectangular capillaries have dimension of 450 nm by 215 
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nm corresponding to a porosity of 4.8 %. The membrane thickness of 10 μm results in a geometrical 
opening angle of 1.23o along the short sides. The area density (determined by the applied ion fluence) 
together with the cross section of the capillaries yields a geometrical transparency (porosity) of 0.9 % 
and 4.8 % for rhombic and rectangular capillaries, respectively. The geometrical transparencies of 
these capillaries are sufficiently so low that the nanochannels can be regarded as individually well-
separated objects. To avoid macroscopic charge-up, the both sides of the capillary membrane were 
coated with 10 nm-thick layers of Au.  

The transmission experiments with HCI were performed at the ECR ion source and S-EBIT of 
Stockholm University. Beams of Ne7+ ions were collimated to a divergence of less than 0.2°, size of 
2×2 mm2, and intensity of 8 to 80 pA/mm2 at the membrane position by a pair of four-jaw slits, set 
1.55 m apart. The capillary membrane was mounted on a goniometer of five-degree adjustments: three 
in translational directions and two in rotational directions. The capillaries can be oriented in the 
direction of the incident beam by the tilt angle α. The observation angles φ  and θ, related to the hit 
position in the detection plane, are given with respect to the incident beam direction (see figure 1). The 
transmitted ions were imaged using two-dimensional micro-channel plates (MCPs) with a resistive 
anode [31]. An electrostatic deflector was mounted downstream of the capillary membrane to analyze 
the charge states of the transmitted ions (figure 1).  

3.  Ion transmission results 
The angular distributions of 7-keV Ne7+ ions transmitted through the rhombic and rectangular 
capillaries, with a tilt angle α = 0°±0.25°, are shown in figure 2. We find that the rectangular 
capillaries give a rhombic angular distribution of transmitted ions, with the long axis of the rhombus 
parallel to the short sides of the rectangles (figure 2a), and orthogonally, rhombic capillaries produce a 
rectangular transmitted angular profile with the long axes of the rhombi parallel to the short side of the 
rectangle (figure 2b) [28]. This gives strong evidence that the angular distribution does not originate 
from the shape of the primary beam. Also, it has been found that only the ionic portion of the 
transmitted beam is tailored by the interaction with the capillary wall [28].  

 

 
Figure 2 (color online). Two-dimensional angular distributions for 7-keV Ne7+ transmitted through 
mica capillaries of rectangular (a) and rhombic (b) cross-section with the corresponding orientations 
of the long sides of the rectangles and the long axes of the rhombi in a plane perpendicular to the 
beam (as indicated on the left panel). 

 
In the search for the origin of this phenomenon, we consider three possibilities: (1) due to the 

Coulomb repulsion force directly from the deposited charge on the walls, (2) the force from the exit 
field due to the deposition of charges close to the entrances of millions of capillaries [6], and (3) due to 
the force from the induced image charge by the projectiles. In case (3) the interaction between the ions 
and walls is expected to be instantaneous while the other two cases it is dependent on the deposited 
charge and thus dependent on the charge-up time. In order to identify the role of these forces, we 
measured the time evolution of the transmitted angular distribution at α = -0.1° for the incidence of 
14-keV Ne7+, starting with uncharged capillaries (α = -0.1° was experimentally determined by the 
offset of the centroid position of the transmitted angular distribution from the peak center of the 
primary beam [29]). In this measurement the angular distributions at the very early stage of 
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transmission was recorded. Figure 3a shows the transmission angular profile after, on average, 4 ions 
have entered a single capillary. The characteristic shapes appearing for such a low number of ions 
gives evidence that the ion transmission profile is tailored by the image forces (3) rather than case (1) 
and (2). 

 
Figure 3 (color online). Initial angular distribution of the transmitted ions is shown for Ne7+ at the 
incident energy of 14 keV: experimental profiles with α = � 0.1° in (a); simulated transmission 
profiles considering the image force effect for rhombic capillaries in (b). Insets in the upper left 
corners of each graph show the orientations of the rhombi. 

 

 
Figure 4 (color online). Simulated results: (Top) The ion flux distributions in the transverse plane at 
various distances from the entrance along the axis of the rhombic capillary z for α � � 0.1° (with 
channel length L), and (Bottom) the corresponding angular distributions of the transmitted ions in the 
detection plane for 14-keV Ne7+ ions. 

 
We performed a trajectory simulation to obtain the transmitted angular distribution, by considering 

a simplified image forces (a superposition of the image forces from each side of the nanocapillary wall) 
[28-29, 31]. The injection angles of the ions and the beam divergence are taken from the experiments. 
The incident kinetic energy of the beam is fixed at 14 keV. As seen in figure 3b, the experimental 
transmission profile is reproduced quite well by the simulation. 

To demonstrate how the image force tailors the ion beam, we plot the ion flux distribution in the 
transverse plane at various distances, z, from the entrance along the axis of the rhombic 
capillary and the corresponding angular distribution, which is expected to be seen in the detection 
plane, in figure 4. Our calculations reveal that the angular distribution of the ion beam, initially with a 
circular shape at the entrance, becomes rhombic at a distance z  0.5 L, and then it starts to expand. 
Close to the exit of the capillary the charged particles with the largest deflection angles are blocked off, 
thus, creating the observed angular distributions.  

The projectiles gain transverse energy due to the image charge attraction and therefore their kinetic 
energy increases a bit from the incident energy (14000 eV). In figure 5a we show the simulated kinetic 
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energy distributions of the ions at various distances, z, from the entrance along the axis of the 
rhombic capillary. It can be seen that the projectiles gain more transverse energies with 
increasing distance from the entrance of the capillary. We plot in figure 5b also the yields of 
the transmitted ions as a function of the kinetic energy (E) in intervals: E < 14000.4 eV, 14000.4 
eV < E < 14001.5 eV and E > 14001.5 and the corresponding angular distributions at the exit of 
the capillary in figure 5c, 5d and 5e. It can be seen that the tailored part is less than 10 % in the 
transmitted angular distributions. 
 

   
Figure 5 (color online). (a) The simulated kinetic energy distributions of the projectiles for the 
incident energy of 14000 eV, due to the image charge deflection in the transverse direction, at various 
distances from the entrance along the axis of the rhombic capillary z (with channel length L); (b) the 
yield of the transmitted ions as a function of the kinetic energy in intervals (E < 14000.4 eV, 14000.4 
eV < E < 14001.5 eV and E > 14001.5) at the exit (z = L) of the capillary; the corresponding angular 
distributions of the transmitted ions were plotted in (c), (d) and (e), as denoted in (b) for the  
incidence of  14-keV Ne7+ ions at a tilt angle of α � � 0.1°. 

4.  Conclusions and outlook 
Our results demonstrate that the shape of ion beams can be tailored by transmission through 
nanocapillaries of defined geometrical cross sections. The immediate onset of the characteristic shape 
in the transmitted angular distributions from the time evolution measurement, starting with uncharged 
capillaries, as well as trajectory simulations show clear evidence that the tailoring effect is attributed to 
the image forces induced when the projectiles transmit through the nanochannels. The image force 
deflects ions in the transverse direction and therefore defocuses the transmitted beam which, together 
with the collimation at the exit of the capillary for large deflection angles of the transmitted ions, 
results in the tailoring effect.  

Our findings suggest exploitation of capillaries of various conductivities and cross sections as a 
tool to guide, focus, as well as shape, ion beams for diverse applications. With future developments of 
nanostructure engineering it should be possible to produce membranes with capillaries of any designed 
shape. The tailored particle beams can be used, for example in microprobes, for ion beam writing and 
structured ion implantation. 
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