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Abstract. A time-dependent Feshbach formalism is proposed to study the resonant
photoionization of the helium atom using ultrashort laser pulses. This spectral method
consist in solving the time-dependent Schrodinger equation by expanding the time-dependent
wavepacket in terms of eigenfunctions defined in two orthogonal halfspaces: a bound-like
resonant Q and a non-resonant scattering-like P. The latter eigenfunctions for the projected
Hamiltonians QH Q and P HP are not indeed eigenfunctions of the total Hamiltonian, so that the
electrostatic coupling QHP acts as a leaking operator @—P responsible for the temporal decay
of resonances into the underlying continuum, keeping the physical insight of the Fano-Feshbach
time independent formalisms. This method allows not only for accurate descriptions of the
resonance parameters (energies, widths and Fano shape parameters) but also for the temporal
evolution of the photodynamics involved in the resonant photoionization when using short laser
pulses. We illustrate the performance of the method by analyzing the temporal formation
of i) the one-photon ionization cross section below the second ionization threshold and the
buildup of Fano profiles and ii) the up-down asymmetry of photoelectron angular distributions
resulting from interferences of S-, P- and D-waves after simultaneous photoexcitation and decay
of the lowest 15¢, 1 P° and ! D° resonant states, by using two sequential laser pulses with XUV
harmonic frequencies separated by a time delay.

1. Introduction
In this contribution we describe a time-dependent Feshbach formalism as applied to resonant
photoionization processes in helium subject to ultrashort laser pulses. The study of the resonant
phenomena in atoms goes back to the pioneering theoretical work of U. Fano in 1935 [1] while
under the tutorship of E. Fermi at the Institute of Physics of Rome University in Via Panisperna.
Also, in 1935 Beutler reported an ultraviolet absorption spectrum of helium [2] in which a series of
two-electron excitations were identified, showing anisotropic lineshapes in the absorption profile.
The theoretical analysis in the pioneering paper by U. Fano in 1935 (see also [3]) was based on
the interaction of a discrete state |p) with a flat structureless discretized continuum described
by states |k), all of them eigenfunctions of an unperturbed Hamiltonian Hy, i.e., (¢p|Ho|p)=E,
and (k|Hy|k)=Er=Kkd, where k is an integer number and 0 is the constant energy spacing for the
discretized continuum with a density of states 1/0. A new Hamiltonian H=Hy+V (more truly
connected with the atomic realm) is able to couple the discrete state |¢) with the continuum |k)
through the matrix element v = (p|V|k).

The eigenfunctions |¢,)= (|¢)(p| + >_i |k)(k])|¥y) of the new Hamiltonian H, i.e.,
H|1,)=E,|¢,,) [with energies given by the trascendental equation >, v*/(E,— Ej)=E,,] contain
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components of the discrete state (p|1,) = [1+ >, v?/(E, — Ex)?~"/? as well as of each state
in the discretized pseudocontinuum (k|v,) = v(p|v,)/(E, — Ek), so that the information of
the discrete state |¢) is now diluted within the set of new eigenstates {|¢,)}. More precisely,
the presence of the discrete state |¢) strongly modifies the new quasicontinuum eigenspectrum
{Ey, |1u)} with respect to the original flat continuum {Ej, |k)} specially in the energy region
around the energy position of the discrete state, E=FE, &+ hI'/2, where I' is the resonance
width given by the Fermi’s golden rule I'=2Z|(p|V|k)|*4+. This simple model by Fano contains
much of the relevant physics of the resonant phenomena in atoms. Firstly, time evolution
of a state initially prepared to be |¢) will decay exponentially, as shown by a simple time
propagation |¥(t)) = exp(—iHt/h)|) = 3, [¥u) exp(—iEut/h){(Yulp) using the complete set
of eigenstates {|1,)}. By projecting |¥(¢)) with (| (autocorrelation function) and after a
simple integration by residues one arrives to the exponential decay law for the discrete state
P(t) = [{¢|¥(t))|?> = exp(—Tt). Incidentally this simple model also allows to roughly explain
the presence of asymmetric profiles in the photoabsorption spectrum [with the well-known Fano
parametrization o ~(q+¢€)?/(1+€2)] by adding a second discrete state |x) to the previous model,
coupled with a new interaction W to both the discrete state |¢) and the continuum |k) [1, 3].
Fano extended this model in 1961 after new experimental evidence of asymmetric peaks in the
He spectrum, in one of the most cited papers in physics [4], then generalizing his 1935 result
for a realistic electronic continuum, and explained that autoionization is due t:o configuration
interaction between the discrete and continuuum spectrum and the asymmetric peaks in the
excitation spectra are to be attributed to the interference between the direct ionization to the
continuum and the autoionization of doubly excited states. An extension of the Fano model
(1961) to the time domain, motivated to better understand the ultrafast autoionization dynamics
involved with short laser pulses, is discussed for instance in [5] and [6].

H. Feshbach also developed a unified theory for multichannel resonance phenomena in nuclear
reactions [7], involving Q and P projection operators for the closed and open channels, which
was later applied in atomic physics [8], where explicit forms for the projection operators were
proposed (see also [9]). Accordingly, it is common to use the name of Fano-Feshbach formalism
for resonances. All these developments were performed in the energy domain, mostly to explain
spectra recorded with continuous radiation. The advent in the last decade of high frequency
ultrashort laser pulses down to the attosecond duration [10] has driven theoreticians to develop
approaches in the time domain to deal with new emergent nonlinear phenomena in these atomic
time scales, which ultimately require the solution of the time dependent Schrédinger equation.
Among fast evolving phenomena in atoms, the temporal formation and irreversible decay of
transient metastable states play a fundamental role. For instance, the electron dynamics in
helium autoionization has recently been monitored and controlled experimentally using isolated
attosecond pulses [11], and showing control over the two interfering paths: direct photoionization
and delayed autoionization, which provides the feasibility of observing the time resolved buildup
of a Fano resonance in the time domain [12].

We present some details of a recently published work [13], where a general non-perturbative
time-dependent Feshbach method is proposed (see also [14] for applications in molecules) to study
the resonant photoionization dynamics in two-electron atoms subject to short laser pulses.

2. Theoretical description and computational details

While under the influence of short intense laser fields, we are bound to directly solve the time-
dependent Schrédinger equation (TDSE) for He, (H + Vi(t) — ih0/0t)¥(x1, x2,t)=0, which
contains the laser-atom interaction given by Vi (t)=(p1 + p2) - A(t) in the velocity gauge form
of the dipolar approximation (equivalence with results in the length gauge yields a consistency
proof for completeness). The vector potential for a linearly z-polarized laser pulse with duration
T and central frequency w reads A(t)=é,f(t) cos|w(t — T/2)], where f(t) is the pulse envelope,
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chosen here to be f(t)=sin?(rt/T) for the sake of computational simplicity and defined in the
time interval ¢ € [0,7] and zero elsewhere. The vector potential amplitude Ay is related to the
laser intensity I through Ag=+/I[W/em?]/3.5095 - 1016w2. Time-dependent non-perturbative
computations for processes involving the electronic continuum for two-electron atoms and strong
fields were firstly addressed by Zhang and Lambropoulos [15, 16] with £2 discretized methods
based on expansions in terms of B-splines. Following their procedure, it is usual to expand the
time-dependent wavefunction on the basis set of two-electron eigenstates of the total Hamiltonian
H, W(ry,re,t)=>p , CLW(E)(t)(bﬁ(SE)(rl,rg)exp[—iELvn(E)t/h], which is equivalent to use the
|4,,) eigenstates in the model by Fano described in the introduction, i.e., they already have the
effect of resonant states but diluted among the H eigenstates. Although the photoelectron energy
spectrum can be retrieved after the laser pulse of duration T' through the expansion coefficients,
dP/dE(Ec,t = 00)= 3 1 »(p=p,) |CLn(p=p,)(t)?p(E = E.), if the laser pulse has a duration
shorter than the lifetime of the Fano resonant state, the information on the autoionization decay
dynamics is not given straightforwardly at any time ¢ by the probabilities |Cp, ,,(p— Ee)(t)\2 since
these are expansion coefficients for stationary eigenstates of the field-unperturbed Hamiltonian
H, ie., these expansion coefficients for the pseudocontinuum eigenstates carry unresolved
information of the autoionization decay of the discrete resonant state into the continuum and
the time resolution of the autoionization process is hidden within the dynamics. Instead it is
better to expand the time dependent wavepacket in the Fano configuration basis of discrete |¢)
and flat pseudocontinuum |k) states, which are not eigenstates of the total Hamiltonian H but
of an uncoupled Hamiltonian Hj.

Consequently, we make use of an spectral method by expanding the time-dependent
wavefunction with the stationary Feshbach eigenstates |Q®,) (resonant) and |[P¥%) (non
resonant continuum) of the QHQ and PHP projected Hamiltonians, respectively, which play
a similar role to those of the discrete |p) and the flat pseudocontinuum |k) states in the
Fano model. In fact, since Q + P=1 (completeness), P?=P and Q>=Q (idempotency), and
QP=0 (orthogonality), the total Hamiltonian H and its eigenstates |¥) can be written a la
Feshbach in the form H=Hy+V and |¥)=|Q®,)+|PVYL), respectively, where Hy=QH Q+PHP
and V=QHP+PHQ, and both |Q®,) and |[P¥}) are eigenfunctions of Hy through the following
equations

(QHQ — &,)|Q®,.) = 0; (PHP — E)|PYY) = 0. (1)

Hj eigenstates are coupled by the V' term, which in the Feshbach formalism corresponds, for
instance, to the leaking operator QHP, responsible for the resonance decay from the bound-like
resonant part |Q®,) to the nonresonant scattering-like part [PU%) of the total wavefunction.
Because of the spatially localized (|Q¥)—0) and temporal transient nature of resonant states
(QHP couplings are not effective for t—o0 since the whole resonant population in Q halfspace
eventually vanishes), then Lim, ;oo H=Hgy and Lim, ;00| ¥)=|P¥Y%). For practical computa-
tions, our expansion reads [¥(t))=>_, Cp(t)|Zp) exp(—iEpt/h) + >, Cr(t)|Q¥,) exp(—iE,t/h) +
[ dECE(t)|PY¥Y) exp(—iEt/h), where {]Eb>,Eb}é\i’1 corresponds to the set of IV, bound states,
{|Q\I’T,ET}7]Y:T1 to the set of IV, resonant states, with E,.=&.+A,, and A, is the perturbative
second-order energy correction (energy shift) to the resonance energy &, due to the surrounding
continuum states coupled by the V term, and {|PWY%), E}p refers to the flat non-resonant con-
tinuum states. Now, by inserting this ansatz into the TDSE one arrives to a large set of coupled
differential equations which can be expressed in packed block form, with {n,m}={b,r, E}, as
follows

(_jb A 0 Vi)or Vilt)or , Cy
ih | Cp | =™t [ V() 0 QHP,p | e Fmth | C, |, (2)
Cp Vit)eg PHQr,» Vilt)r.E Ce
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where Vi,(t),,m are the dipolar coupling matrix elements and QHP are the V electrostatic
couplings in the Fano model. These QHP couplings are active during and after the laser
pulse until the full depletion of the |QW¥) resonant halfspace. Eigenproblems associated to
the asymptotic basis expansion Hy=QH OQ+PHP are solved using a configuration interaction
(CI) method based on expansions in terms of antisymmetrized products of atomic orbitals, the
latter expanded in terms of 200 B-splines with polynomial order k=7 enclosed within a box of
size L=150 a.u., and using an exponential-linear sequence for the knot-points to guarantee a
reasonable good description of both the inner radial localized part of resonances and the outer
radial part of the continuum wavefunctions.

The QHQ stationary eigenproblem is solved for the lowest 19 18¢ 26 'P° and 25 'D¢
resonance states located below the Het(N=2) ionization threshold using around 10000 two-
electron configurations which, for instance, produce the following resonant parameters (E,,I',)
for the lowest and fastest decaying resonances: (-0.777533 a.u., 0.005051 a.u.) for the 1S¢
2(1,0)3 resonance with a lifetime 7=4.79 fs; (-0.692642 a.u., 0.001392 a.u.) for the !P°
2(0,1)5 resonance with 7=17.4 fs; and (-0.701512 a.u., 0.002528 a.u.) for the D¢ 5(1,0)5
resonance with a lifetime 9.56 fs. To keep simplicity in the application of this method we
firstly choose to deal with resonant photoionization to final states of energy E in the case of
one open continuum channel, He™ (1s)+ e~ (gf), with e=E-Epe+(15)- Accordingly the flat non-
resonant continuum states are also computed with a CI method, in terms of antisymmetrized
configurations <X|’P\IIOEZ,>:Z]]§V£1 CiA{$15(x1) - pro=1(x2)} where one of the electrons is fixed to
the 1s orbital and for the other its index k runs up to Np=170 orbitals built with B-splines basis
for each angular momentum ¢ (static exchange approximation), to obtain at least 75 continuum
states lying between the first Het (IN=1) and the second He" (N=2) ionization thresholds. With
this set, we interpolate 2000 points for both dipolar and QHP couplings to improve the density
of states and to smooth the time propagation. Thus the solution of the coupled differential
equations in Eq. (2) involves tens of bound b and resonant r states, but thousands of discretized
continuum states F;, properly normalized to the Dirac delta. Nevertheless, all results shown
here can be easily calculated in desktop computers.

3. Illustrative results
(i) Time resolved Fano profiles and one-photon ionization cross section.

The time dependent formation of the Fano profiles can be analyzed from the photoelectron
spectrum, i.e., photoionization probabilities differential in energy computed from the
continuum expansion coefficients, dP(E,t)/dE=|Cg(t)|*p(E), where p(E) corresponds to
the density of states of our discretized pseudocontinuum. We have solved the set of coupled
equations (2) with the initial condition set for the ground state of He and using a laser
pulse with central frequency w=2.211 a.u., intensity =10 W/cm? and duration 7=20
fs. The photoelectron spectra for continuum energies close to the lowest 'P° resonance
is plotted in figure 1. The results from our time-dependent Feshbach method eventually
converge to the asymptotic energy domain asymmetric profile (for a Fano shape parameter
g=-2.8) for times much longer than the pulse duration, and show transient oscillations due
to interferences associated to the still active resonance decay (the resonance lifetime here is
7~18 fs). Incidentally, it is shown in [13] that within this method the resonance population
closely follows an exponential decay law after the pulse, i.e., Pp(t)=P,(T)e "¢=T) with
I'=0.001392 a.u., and for a propagation time t=50 fs in figure 1, the population of the
lowest ! P° resonance is not yet fully depleted.

The one-photon ionization cross section can also be obtained from the total ionization
probability Pr(t) extracted from our solution of the TDSE, by normalizing with the photon
flux of the laser pulse, then using the expression o[em?|=w[Joules|P;(t)/I[W/cm?]C|s],

where C[s] = fOT dt[f(t)]?=3T][s]/8. Figure 2 shows the temporal formation of the one-
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Figure 1. Time resolved buildup of the Fano
profile in the photoelectron energy spectrum
in the neighbourhood of the lowest He 'P°
resonance, obtained with a laser pulse (inset)
of duration T=20 fs, frequency w=2.210
au. and intensity I=10' W/cm?. Blue
dots: time-dependent Feshbach formalism;
red solid line: asymptotic stationary result
according to Fano theory [4].
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Figure 3. Time evolution of the photoelec-
tron spectrum for the continuum components
with fixed energy F (degenerated with that
of the lowest 'P° resonance), using two se-
quential laser pulses with durations T1=T5=5
fs, frequencies wi=w9/2=1.105 a.u. and in-
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Figure 2. Temporal formation of the one-
photon ionization cross section (in Mbarn)
from the ground state to the ! P° continuum
of He, between the first He™ (N=1) and
the second He™ (N=2) ionization thresholds,
using the same laser pulse described in figure
1. The buildup of Fano profiles for the two
fastest decaying resonances, 2(0,1)3 (7 ~18
fs) and 2(1,0)5 (7 ~82 fs) is a clearly visible
feature.
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Figure 4. Time dependence for the up-down
asymmetry of the photoelectron angular
distributions produced by the two sequential
pulses with the harmonic frequencies quoted
in caption of figure 3, for two different time
delays (7=5 fs and 6 fs) between the two laser
pulses. The interfering term contributed by
P- and D- waves [the line 2Re(CsCp) in
figure 3] dominates for the abrupt change in
the angular distribution asymmetry when the
time delay 7 is modified.
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photon ionization cross section between the first and the second ionization thresholds for
the same laser parameters described previously. Since only the first and the third lowest
1 Po resonances in He have lifetimes under 100 fs, two noticeable Fano peaks associated to
these states develop in the spectrum. In this work we have not improved our method in
order to extract asymptotic amplitudes for the continuum Cg(t — o0o) from our wavepacket
(which is propagated only up to 80 fs). Methods to extract spectra from the correlated
wavepackets in He have been summarized and discussed recently [17], and some related
contributions are also presented in this conference.

Asymmetry in the photoelectron angular distributions.

To play around with our Feshbach method we analyze the manipulation of the asymmetry
in the photoelectron angular distributions by using two sequential laser pulses with XUV
harmonic frequencies. The first pulse with w; is able to ionize the He atom by two-
photon absorption close to the resonant region of the lowest 15¢ and D¢ doubly excited
states, which generates partial S- and D- waves both by direct photoionization and by
delayed autoionization. After a controlled time delay 7 between the two laser pulses,
defined as the time interval between the centers of the two pulses, the second pulse
with lower intensity and ws=2w; populates resonant and continuum 'P° states by one-
photon absorption. Figure 3 shows the crucial importance of the resonance decay in
the photoelectron spectrum and the complex interference of S-P-D continuum waves
[here g—g(E)N|C}g(t)—i—C§(t)+Cg(t)|2,0(E)]. More specifically, the P-D interference is the
dominant contribution (see figure 3) and it changes dramatically as a function of the time
delay 7 between the two harmonic pulses. Consequently, the preferred direction for the
escaping photoelectron (up or down in figure 4) could be selected by appropriately choosing
the time delay 7 between the two consecutive pulses.
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