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Abstract. Positronium (Ps) is a purely leptonic hydrogen-like atom formed from an electron 
and a positron. Since the interactions of electrons and positrons are thought to be almost 
entirely electromagnetic, precision measurements of the Ps energy levels should constitute a 
good test of QED theory. The ultimate precision is limited by the rapid annihilation of the 
various Ps states and the number of Ps atoms available. Much progress in making better Ps 
sources has been made since the 1950’s when Ps was discovered and its principle 
characteristics measured in by the pioneering experiments of Martin Deutsch. The most notable 
milestones were the first reproducible schemes for making slow positrons and Ps in vacuum by 
Canter and his co-workers in the 1970’s and the discovery of the enabling technology for 
accumulating slow positrons by Surko and co-workers in 1989. These techniques have made it 
possible to generate high density bursts of slow Ps atoms that has led to the production of di-
positronium molecules, Ps2, and the observation of the Lyman-alpha-like transition in Ps2 at a 
wavelength of 251 nm predicted by Varga and co-workers. The possibilities for 1S-2S 
spectroscopy of triplet and singlet Ps with precisions relevant to the proton charge radius 
problem and efficient production of slow Rydberg Ps atoms useful for measuring Ps free fall 
are discussed. 

ICPEAC-2013 INVOCATION 
We met at Lanzhou in a setting fit for kings 
To learn more about how the world works, 
Mindful of those who could not join us there.  

1. Introduction.

These are exciting times for physics, when the fact that 95% of the world is dark matter and dark 
energy suggests new particles and forces must exist. Some evidence that new physics is already being 
detected is (1) There is a significant difference in the charge radius of the proton as found from 
measurements using electrons vs negative muons; and (2) There is a near-earth and cosmic excess of 
positrons that suggests positron accumulation from dark matter annihilation. One might ask if perhaps 
measurements on the purely QED atom positronium (Ps) could shed light on the problem. The narrow 
linewidth of its triplet 1S-2S interval, 1.27 MHz compared to the full triplet 1S-2S interval 1 233 607 
216 MHz, suggests that precisions of parts in 1012 are possible. Such a measurement is not so easy as it 
might at first appear because Ps spectroscopy is not your ordinary type of atomic physics. This is 
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because the positrons for the experiments must created out of the vacuum with necessarily relativistic 
energies, the positrons have to be slowed to eV energies and compressed in space and time, the Ps 
must be formed in vacuum to avoid perturbations, the Ps atoms decay in a few nsec, and they must be 
detected one at a time.   

Positrons are produced by pair production at electron accelerator targets and in nuclear reactors 
and from the beta decay of certain radioactive isotopes. The many applications for positrons include 
atomic physics experiments, positron emission tomography (PET), measuring defect densities in 
materials and electron momentum densities in solids.  

Positronium is a purely leptonic hydrogen-like atom formed from an electron and its antiparticle, 
the positron. The structure and interactions of positronium are thought to be governed purely by 
electromagnetic interactions. The latter implies: (a) precision measurements of the Ps energy levels 
should constitute a good test of QED theory [1]; and (b) Ps rapidly annihilates [2], making it difficult 
to accumulate and greatly restricting the ultimate measurement precisions. Ps was discovered and its 
principle characteristics measured in the 1950’s by Martin Deutsch [3]. The possibilities for atomic 
physics experimentation opened up with the discovery of slow positron emission from a surface [4] 
and the first reproducible schemes for making slow positrons and Ps in vacuum by Canter and 
coworkers [5, 6]. In particular, this work led directly to precision measurements of the Ps 13S1-23S1 
interval [7]. The development of the enabling technology for accumulating slow positrons [8] is now 
making it possible to generate high density bursts of slow Ps and to observe their interaction with each 
other [9] and the production of di-positronium molecules, Ps2 [10]. Short pulses of Ps atoms suited to 
laser spectroscopy have been used to study the Lyman-alpha-like transition in the Ps2 molecule at a uv 
wavelength of 251 nm [11, 12], as well as the Ps formation and dynamics in various materials [13] and 
the efficient production of Rydberg Ps atoms [14] that are needed for measuring Ps free fall. 
Increasing the number density of a positronium gas could enable Ps Bose-Einstein condensation at 
room temperature [15] and perhaps stimulated amplification of annihilation radiation [16]. The 8 
milestones along the way to the present state of experimentation with positronium are presented in the 
next section. 

2. How can we do spectroscopy on transient Ps atoms? 8 milestones 1951-2005.

2.1 Milestone 1: Discovery of Positronium.  

The field of experimental positronium physics was born with Martin Deutsch’s report [17] that long 
lived (142 ns mean lifetime) triplet ground state (3S1) Ps atoms are formed when positrons from a 
radioactive + source (22Na) stop in N2 gas. The proof of the discovery was that the 3S1 atoms which 
ordinarily decay into three photons, could be made to annihilate into two photons (2 ) from the 1S0 
singlet state by adding a little nitric oxide (NO) to the N2 to provide nearly free electrons for spin 
exchanging collisions that convert triplets into singlets, for which the lifetime is 125 ps. The proof of 
the effect is evident in Fig. 1 which shows an increase in the amplitude of the 2  annihilation 511 keV 
photopeak for 5% NO. Three months later Deutsch had measured the decay rate of 3S1 Ps, with the 
value 3 = (6.9±0.4) s-1 from my fit to the 6 Freon measurements at the highest pressures in Fig. 2 
[18], in agreement with the precise current theoretical value 3 = (7.04007±0.00002) s-1 [1]. It is 
proper to ignore the datum at the lowest pressure because many of the positrons will then be 
annihilating in the walls of the pressure vessel. 
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Figure 1. Martin Deutsch’s evidence for 
the formation of triplet positronium in N2 
gas [17], and its absence when quenched 
by a small amount of nitric oxide.

Figure 2. The positronium decay rate in 
Freon extrapolated to zero pressure, 
ignoring the lowest pressure datum, 
yields 3 = (6.9±0.4) s-1 [18]. 

Deutsch and his student Dulit next observed [see Fig. 3] that Ps triplet decays are quenched by a 
magnetic field due to the Zeeman mixing of the triplet m=0 singlet and triplet sublevels, which 
allowed them to deduce that the hyperfine splitting of the ground state is 0.94 meV [19]. This result 
was quickly followed by Deutsch and Brown’s observation of the Zeeman resonance between the 
triplet m=0 and |m| =1 levels in a magnetic field [Fig. 4] which yielded a value for the hyperfine 
splitting (203.2±0.3) GHz [20] in agreement with the current theoretical value (203.3917±0.0005) [1]. 
These four amazing experiments were all performed within the space of one year. Deutsch then hoped 
to be able to measure the equivalent of the Lamb shift in the first excited state of positronium. His 
student Kendall’s experiment to produce excited states [21] using an intense Sn lamp producing 
242.95 nm radiation yielded a result of the expected sign and magnitude, but only at a 2.5 standard 
deviation confidence level.  

Figure 3. Magnetic quenching of three 
photon annihilations of positronium 
[19].

Figure 4. Zeeman resonance between 
the m=0 and |m|=1 states of positronium 
[20]. 
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2.2 Milestone 2: The first stable slow positron moderator. 

At this point progress in experimental positronium physics, so wonderfully initiated in the wonderful 
work of Deutsch, ceased until the field was revitalized by the successful implementation of the slow 
positron method over the years 1972 through 1975 by Karl Canter working with his colleagues 
Coleman, Griffiths, and Heyland at University College London and Mills and Berko at Brandeis 
University. Madansky and Rasetti’s unsuccessful attempt at making a beam of low energy positrons 
[22] was followed by several working low intensity slow positron beams that were difficult to 
reproduce [23, 24, 25, 26] and finally by the serendipitous discovery of a reproducible smoked MgO 
positron moderator that yielded positron beams with a fast positron to slow positron conversion 
efficiency of about 3×10-5 [5], more than an order of magnitude higher than before. (One version of the 
story of the discovery of the MgO moderator is given in [27].) It was later discovered that solid Ne 
makes a 300 times better moderator than MgO [28]. A Ne moderator works by the same principle as 
MgO, namely that a wide band gap insulator allows few eV positrons to diffuse through the solid 
without energy losses due to electronic excitations, resulting in a high moderation efficiency, since this 
is approximately equal to the ratio of the few eV positron diffusion length to the fast positron 
implantation depth. Solid Ne makes a superior moderator because it has a much longer positron 
diffusion length, since the positron mean free path for elastic scattering in solid Ne is very large due to 
the presence of a deep Ramsauer-Townsend minimum in the positron-Ne scattering cross section at 
about 0.6 eV [29, 30].  

2.3 Milestones 3 and 4: n=1 and n=2 Ps production in vacuum. 

The new moderator made it possible for Canter, Mills, and Berko at Brandeis University to efficiently 
make ground state positronium by colliding slow positrons with a solid target in vacuum [6], as 
illustrated in Fig. 5. Because the target could be located far from the large background of gamma rays 
from the 22Na source they were also able to detect a tiny amount of first excited state positronium 
atoms that were formed in vacuum and to measure the Lamb-shift-like 23S1-23P2 interval of 
positronium [31, 32]. 

2.4 Milestone 5: Laser excitation of Ps. 

Adding a positron trap and buncher to a slow positron beam permitted Chu and Mills [33] to match a 
continuous slow positron source to a pulsed laser to make the first laser spectroscopy on Ps. The 
stochastic trap shown in Fig. 6 captured positrons that were given a large angular momentum after 
they were inside the trap so they could not escape past a magnetic mirror. After being accumulated for 
about 0.1 ms the positrons were formed into a 10 ns bunch using a harmonic potential well that was 
suddenly switched on. The positrons then formed Ps at a Cu target and some of them were driven to 
the 2S state by two-photon 1st order Doppler-free excitation using 486 nm pulsed laser light and 
photoionized by a third photon. The photoemitted positrons were detected with high efficiency and 
low background using a microchannel plate detector and an E×B velocity selector. The resonance 
signal, the laser off background rate, and the frequency marker derived from a deuterium Balmer-  
lamp and a Fabry-Pérot interferometer are shown in Fig 7. 

2.5 Milestones 6 and 7: Positron accumulation and rotating wall compression.  

In 1989 Surko, Leventhal and Passner accumulated 104 times more slow positrons using a buffer gas 
to trap the positrons between the end cap electrodes of a Penning trap [8]. As seen in Fig. 8, the 
lifetime of the positrons in the trap was about 1 minute. Greaves and Surko [34] subsequently found 
that positrons could be compressed to high density by a rotating electric field that was applied for a 
few seconds [Fig. 9]. These inventions are combined in the three stage positron beam shown in Fig. 
10.
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Figure 5. Canter, Coleman, Griffith and Heyland replaced the hollow Au cylinder 
slow positron moderator of Coleman et al. with an MgO smoked Venetian blind. 
Replacing the dirty metal with a wide band gap insulator made a long mean free 
path for the slow e+ in the solid and thus a large reemission probability and 
efficient moderator. 

Figure 6. Stochastic positron trap and 
harmonic buncher of Chu and Mills [7].

Figure 7. 2 photon resonant 3 photon 
ionization of triplet Ps [7]. 

Figure 8. Storage of 0.3 million positrons in 
a buffer gas trap by Surko et al. [8]. 

Figure 9. Compression of positrons to a high central density 
using a rotating wall by Greaves and Surko [34]. 
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Figure 10. Positron beam consisting of a 50 mCi positron source and solid Ne moderator, a Surko 
buffer gas trap, and a Greaves-Surko rotating wall positron accumulator. This device produces 15 
ns pulses containing 2×107 ~50 eV positrons at a rate of 1 per minute [35]. 

Figure 11. Positronium forming target, 
showing UV windows and mirror for Ps 
Lyman-alpha light, positron buncher and 
accelerator rings, pulsed magnet coils for 
compressing the positron beam, Ps-forming 
target and cloud of Ps in vacuum. 

Figure 12. Observation of Ps-Ps spin exchange. 
When the positron beam is compressed the ~100 
ns lifetime of triplet Ps is shortened due to spin 
exchange collisions converting triplet Ps into 
singlet Ps which has a 125 ps lifetime. The inset 
shows the cross section of the compressed and 
expanded positron beam. 

2.6 Milestone 8: Single shot lifetime spectroscopy.  

The positron apparatus of Fig. 10 [35] is completed by the addition of a positronium-forming target 
shown in Fig. 11 [36] and a pulsed magnet that compresses the positron beam to a density of about 
1010 to 1011 positrons per cm2. Unlike previous experiments that detected one positron annihilation at a 
time, it is now possible to obtain a complete positron lifetime distribution using a single 1 ns pulse of 
positrons. Fig. 12 shows the lifetime distributions from three single shots of the positron beam at low 
and high density using a porous silica target, and at low density on a stainless steel target which does 
not form much Ps. The quenching of the long lifetime component when the positron beam is 
compressed was the first evidence for Ps atoms interacting with each other. 
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3. Examples of recent spectroscopy on Ps ions, atoms, and molecules.

3.1 Photodissociation of Ps  ions.  

The first example of a recent laser experiment using pulsed positrons is the first observation of the 
photodissociation of the positronium negative ion. This item can be efficiently produced by 
spontaneous desorption from a W surface coated with a partial monolayer of an alkali metal to reduce 
its electron work function [37]. Figure 13 shows the 511 keV photopeak from positron annihilations in 
W plus Ps singlet annihilations. A photopeak at higher energies is due to the Doppler-shifted 
annihilation photons from Ps  ions that are moving towards the gamma ray detector, having been 
accelerated by the W target being at a negative potential relative to a grounded grid.  When light from 
a pulsed YAG laser at 1064 nm is aimed at the Ps  ions some of them lose the extra electron before 
being accelerated, as is evident from the data presented in Fig 14 [38].  

Figure 13. Gamma ray spectra from 
Ps negative ion annihilation in flight 
after desorption from a W surface 
with and without a Cs layer [37]. 

Figure 14. Evidence for photodissociation of Ps 
negative ions by Nagashima et al. [38]. 

Figure 15. Single shot lifetime spectra with and without a 243 nm laser (a) and lineshape for 
the 13S-23P transition (b).  
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The new source of Ps  ions that made this experiment possible will be very useful for a number of 
other applications, including precision spectroscopy of the Ps  ion Feshbach resonances and the 
production of fast Ps beams. 

3.2 Ps Lyman-  spectroscopy. 

The second example concerns exciting the Ps Lyman-  transition using 243 nm light from a 
frequency-doubled pulsed dye laser at 486 nm. Fig. 15a shows that the amplitude of the time-delayed 
portion of a single-shot Ps lifetime spectrum is reduced when the laser is resonant with the Lyman-  
transition; Fig. 15b shows the resonance in the “delayed fraction, fd, which is the fractional area of the 
lifetime curve from 50 to 300 ns. The full width at half maximum (FWHM) of the resonance is about 
0.33 nm compared to the 0.09 nm one would observe from a Boltzmann distribution of Ps atoms at 
300 K. Ps Lyman- spectroscopy has revealed several effects that need to be mentioned in order to 
understand the experiments that observed the excitation of the Ps2 molecule to its first excited state.  

3.2.1 Ps confinement energy in porous silica. First of all, Ps formed in porous silica after shallow 
implantation of the positrons at 1.1 keV is emitted into vacuum with a Doppler distribution of 
velocities parallel to the surface such that the FWHM of the Lyman- resonance is 0.48 nm. As the 
implantation energy is raised the Ps suffers more and more collisions on its way to the surface and the 
emission energies fall until a minimum width of 0.16 nm is reached for implantation energies greater 
than 2.5 keV [36]. The reason this width is greater than the 0.095 nm width characteristic of the 300 K 
sample temperature is that the zero-point energy of the Ps in the pores is transferred to the center of 
mass kinetic energy upon emission from the porous sample. 

3.2.2 Squeezing Ps in a pore shifts its 1S-2P resonance wavelength.  If the laser is tilted so that it is not 
parallel to the sample surface, but instead enters the porous silica sample we observe a spectrum 
consisting of a sum of two Lyman- resonances. One resonance is due to Ps confined in the pores for 
which the resonance is shifted to a shorter wavelength because the larger diameter 2P states are 
squeezed more than the 1S states [39]. The other resonance is shifted to longer wavelengths because 
the vacuum Ps has an average velocity component directed towards the laser. 

3.2.3 A reflective sample can give a double peaked resonance. With a tilted surface reflection of the 
laser light can make double peaked resonance due to the presence of both red and blue shifts [40]. 

Figure 16. Change in the delayed fraction 
fd caused by resonant excitation and 532 nm 
photoionization of Ps2 formed in the 
cavities of a porous silica target. (a) raw 
data; (b) binned data. 

Figure 17. Same as Fig. 16 except the 
Ps2 was formed at the surface of an 
Al(111) crystal. (b) Double resonance 
caused by reflection of the laser from 
the crystal surface (c) no 532 nm laser. 
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3.3 Spectroscopy on the dipositronium molecule. 

3.3.1 Formation of Ps2. Positrons implanted onto a metal surface at high densities can make both Ps 
and Ps2 [41], the dipositronium molecule that is the analog of the hydrogen molecule H2. On the other 
hand, Ps confined at high densities in the cavities of porous silica can also form Ps2 [10]. It is to be 
noted that making Ps2 represents an important milestone towards getting high Ps densities for a Ps 
BEC [42]. 

3.3.2 Optical excitation of Ps2.  The positronium molecule was predicted to have an L=1 excited state 
that would be accessible via an electric dipole transition from the ground state using light at a 
wavelength of 250.917(1) nm [43]. An experiment reported by Cassidy et al. succeeded in observing 
optical transitions of Ps2 [44] that was formed within porous silica (see Fig. 16) and at an Al(111) 
surface (see Fig. 17). The measurement using the porous target shows a shift to lower energies than 
the prediction presumably because of a lowering of the L=1 energy due to wall interactions. The poor 
fit of a single Gaussian resonance to the data for Ps2 formed at an Al(111) surface is explained by the 
reflection of the laser beam from the surface, the beam having been tilted towards the surface so that it 
would be sure to interact with the short-lived Ps2 before it decayed in vacuum after traveling about 20 

m from the surface. 
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Figure 18. Simulation of the count rate in a planar 
implosion of L-H2 assuming 109 positrons have been 
implanted at the beginning. The annihilations are 
assumed to be detected with 0.1% efficiency and 
recorded at 50 ps time intervals. 

4. What is next?

The possibilities for future work include for example experimentation on the Ps BEC, measurements 
of the triplet and singlet 1S-2S intervals with parts per trillion precision, measurement of the 
gravitational acceleration of cold Rydberg Ps atoms, and spectroscopy of ordinary atoms and 
molecules to which have been added one or more Ps atoms or positrons. There are also numerous 
experiments to be done using dense positrons, such as the dense positron gas moving on the surface of 
a W field emission tip. In this case one may speculate that the positrons will collect at the tip to make a 
4D (in the sense that the particles are in a 2D harmonic potential) overdamped BCS superconductor 
and a very bright slow positron source. Finally there are single shot applications that could benefit 
from having many positrons present for an experiment that cannot be repeated often, such as 
measuring the positron annihilation rate (simulated in Fig. 18) in a planar imploding plasma [45] to 
report the electron density and temperature as a function of time.  

Acknowledgement. 

The author gratefully acknowledges the invaluable contributions of his collaborators David Cassidy, 
Harry Tom and Tomu Hisakado. This work was supported in part by the US National Science 
Foundation grant PHY 1206100. 

XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013) IOP Publishing
Journal of Physics: Conference Series 488 (2014) 012001 doi:10.1088/1742-6596/488/1/012001

9



[1]      Karshenboim S G 2002 Precision study of Ps and precision tests of the bound state quantum 
electrodynamics Appl. Surf. Sci. 194 307-311 

[2]      Singlet/triplet n=1 Ps annihilates with a mean lifetime of 125 ps/142 ns into 2  /3 . 
[3] Deutsch M 1951 Evidence for the formation of positronium in gases Phys. Rev. 82 455   
[4]      Cherry W H 1958 Secondary electron emission produced from surfaces by positron 

bombardment, PhD Dissertation, Princeton University  
[5] Canter K F, Coleman P G, Griffith T C and Heyland G R 1972 Measurement of total cross 

sections for low energy positron-helium collisions J. Phys. B: Atom. Molec. Phys. 5 L167  
[6] Canter K F, Mills A P Jr. and Berko S 1974 Efficient formation of positronium at surfaces Phys. 

Rev. Lett. 33 7  
[7] Chu S and Mills A P Jr. 1982 Excitation of the Positronium 13S1 23S1 Two Photon Transition 

Phys. Rev. Lett. 48 1333  
[8] Surko C M, Leventhal M and Passner A 1989 Positron Plasma in the Laboratory Phys. Rev. 

Lett. 62 901 
[9] Cassidy D B and Mills A P Jr. 2008 Interactions between positronium atoms in porous silica 

Phys. Rev. Lett. 100 013401 
[10] Cassidy D B and Mills A P Jr. 2007 The production of molecular positronium Nature 416 345 
[11] Varga K, Usukura J and Suzuki Y 1998 Second bound state of the positronium molecule and 

biexcitons Phys. Rev. Lett. 80 1876  
[12] Cassidy  D B, Hisakado T H, Tom H W K and Mills A P Jr. 2012 Optical spectroscopy of 

molecular positronium Phys. Rev. Lett. 108 133402  
[13] Cassidy  D B, Hisakado T H, Tom H W K and Mills A P Jr. 2011 Photoemission of Positronium 

from Si Phys. Rev. Lett. 107, 033401  
[14] Cassidy  D B, Hisakado T H, Tom H W K and Mills A P Jr. 2012 Efficient production of 

Rydberg state positronium Phys. Rev. Lett. 108, 043401  
[15] Platzman P M and Mills A P Jr. 1994 Possibilities for Bose condensation of positronium Phys. 

Rev. B 49 454  
[16] Liang E P and Dermer C D 1988 Laser Cooling of Positronium Optics Communications 65 419  
[17] Deutsch M 1951 Evidence for the formation of positronium in gases Phys. Rev. 82 455    
[18] Deutsch M 1951 Three quantum decay of positronium Phys. Rev. 83 866  
[19] Deutsch M and Dulit E 1951 Short range interaction of electrons and fine structure of 

positronium Phys. Rev. 84 601  
[20] Deutsch M and Brown S C 1952 Zeeman effect and hyperfine splitting of positronium Phys. 

Rev. 75 1047  
[21] Kendall H W 1954 The first excited state of positronium PhD thesis MIT  
[22] Madansky L and Rasetti F 1950 An attempt to detect thermal energy positrons Phys. Rev. 79 

397 
[23]  Cherry W H 1958 Secondary electron emission produced from surfaces by positron 

bombardment PhD Thesis Princeton University 
[24]  Groce D E, Costello D F, McGowan J W and Herring D F 1968 Bull. Am. Phys. Soc. 13 1397 
[25]  Costello D F, McGowan J W, Groce D E and Herring D F 1972 Evidence for the negative work 

function associated with positrons in gold Phys. Rev. B 5 1433 
[26]   Coleman P G, Griffith T C and Heyland G R 1973 A time of flight method of investigating the 

emission of low energy positrons from metal surfaces Proc. Roy. Soc. London A 331 561 
[27]   Mills A P Jr. 2008 The scientific contributions of Karl Frederick Canter (1944-2006) Appl. Surf. 

Sci. 255 3-20 
[28]   Mills A P Jr and Gullikson E M 1986 Solid Neon Moderator for Producing Slow Positrons  

Appl. Phys. Lett. 49 1121 

XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013) IOP Publishing
Journal of Physics: Conference Series 488 (2014) 012001 doi:10.1088/1742-6596/488/1/012001

10



[29]    Canter K F, Coleman P G, Griffith T C and Heyland G R 1973 The measurement of total cross 
sections for positron of energies 2-400 eV in He, Ne, Ar, and Kr J. Phys. B: Atom. Molec. Phys. 
6 L201 

[30]   Jones A C L et al. 2011 Positron scattering from neon and argon Phys. FRe.v A 83 032701 
[31]  Canter K F, Mills A P Jr and Berko S 1975 Observations of positronium Lyman-  radiation 

Phys. Rev. Lett. 34 177 
[32] Mills A P Jr, Canter K F and Berko S 1975 Fine structure measurement in the first excited state 

of positronium Phys. Rev. Lett. 34 1541 
[33]   Chu S and Mills A P Jr 1982 Excitation of the Positronium 13S1 ->23S1 Two Photon Transition 

Phys. Rev. Lett. 48, 1333 
[34]   Greaves R G and Surko C M 2000 Inward transport and compression of a positron plasma by a 

rotating electric field Phys. Rev. Lett. 85 1883
[35]   Cassidy D B , Deng S H  M, Greaves R G and Mills A P Jr. 2006 Accumulator for the 

production of intense positron pulses Rev. Sci. Instrum. 77 073106 
[36]   Cassidy D B, Crivelli P, Hisakado T H, Liszkay L, Meligne V E, Perez, Tom H W K and Mills 

A P Jr. 2010 Positronium cooling in porous silica measured via Doppler spectroscopy Phys. Rev. 
A 81 012715 

[37]  Nagashima Y, Hakodate T,  Miyamoto A and Michishio K 2008 Durable emission of 
positronium negative ions from Na- and K-coated W(100) surfaces New Journal of Physics 10 
123029 

[38]  Michishio K, tachibana T, Terabe H, Igarashi A, Wada K, Kuga T, Yagishita A, Hyodo T and 
Nagashima Y 2011 Photodetachment of positronium negative ions Phys. Rev. Lett. 106 153401 

[39]  Cassidy D B, Bromley M W J, Cota L C, Hisakado T H, Tom H W K and Mills A P Jr. 2011 
Cavity induced shift and narrowing of the positronium Lyman-  transition Phys. Rev. Lett. 106, 
023401  

[40]  Cassidy D B, Hisakado T H, Tom H W K and Mills A P Jr. 2011 New Mechanism for 
Positronium Formation on a Silicon Surface Phys. Rev. Lett. 107 133401   

[41]   Cassidy D B, Deng S H M and Mills A P Jr. 2007 Evidence for positronium molecule formation 
at a metal surface Phys. Rev. A. 76 062511 

[42]   Platzman P M and Mills A P Jr. 1994 Possibilities for Bose condensation of positronium Phys. 
Rev. B 49 454 

[43]   Usukura J, Varga K and Suzuki Y 1998 Signature of the existence of the positronium molecule 
Phys. Rev. A 58 1918 

[44]   Cassidy D B, Hisakado T H, Tom H W K and Mills A P Jr. 2012 Optical spectroscopy of 
molecular positronium Phys. Rev. Lett. 108 133402 

[45]   Sano T et al. 2011 Laser shock compression and Hugoniot measurements of L-H2 to 50 GPa 
Phys. Rev. B 83 054117 

XXVIII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2013) IOP Publishing
Journal of Physics: Conference Series 488 (2014) 012001 doi:10.1088/1742-6596/488/1/012001

11


