
Graphical Visualization on Computational

Simulation Using Shared Memory

A. B. Lima1 and Eberth Correa2

1Instituto de Ciências Tecnológicas e Exatas, Universidade Federal do Triângulo Mineiro -
UFTM, 38064-200, Uberaba-MG, Brazil.
2Faculdade UnB Gama, Universidade de Braśılia - UnB, 72444-240, Gama-DF, Brazil.

Abstract. The Shared Memory technique is a powerful tool for parallelizing computer codes.
In particular it can be used to visualize the results “on the fly” without stop running the
simulation. In this presentation we discuss and show how to use the technique conjugated with
a visualization code using openGL.

1. Introduction

The visualization is an interesting tool to help us to understand some aspects of simulations [1–4].
In many cases we want to see the result of the simulations on the fly, so that we can decide
whether the written code is correct or whether the set of chosen parameters was adequate in
the actual simulation. In practice, visualization on the fly requires more computational effort
than the simulation itself. As an alternative, one can dedicate some computational effort for the
visualization in a separated program in such way that we can turn on or turn off the visualization
when we want to. This technique is considerably advantageous, for the processing time is spent
only at the visualization process.

The parallelization of the code is the more efficient way to proceed in this case. There are
many ways to parallelize the code, we want to emphasize two of them: Message Passing Interface
(MPI) and Shared Memory [5–8].

In the MPI technique, a copy of the code is put at each memory of each cpu and messages are
exchanged between cpus (using a network connection) to set what each cpu must to do in the
code. At the beginning, MPI and its library implementations (OpenMPI, MPICH, etc.) were
the most useful way to implement parallelization in computer programs.

In the Shared Memory, different parts of the program use the same memory area to exchange
data. Although unlike in concept, the Shared Memory parallelization has become useful with
the recent development of more powerful multi-core processors found in either current personal
computers or workstations, in which some of them can have up to 64 cores. It is worth
emphasizing that the algorithms and programming implementation using Shared Memory is
easier than MPI. A schematic view of MPI and Shared Memory is displayed in Fig. (1).

Shared Memory is one of the simplest method of interprocess communication (IPC) and
allows two or more processes to exchange data accessing the same area in memory. In addition,
these communications use the bus of the computer chipset being the fastest way to parallelize
tasks and to avoid copying data unnecessarily.

VII Brazilian Meeting on Simulational Physics IOP Publishing
Journal of Physics: Conference Series 487 (2014) 012014 doi:10.1088/1742-6596/487/1/012014

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

(a) (b)

Figure 1. The (a)MPI and (b)Shared Memory schemes.The data exchange in Shared Memory
is fastest that MPI.

As an example we present in the next section a standard algorithm to implement the
Shared Memory in a computational simulation using Molecular Dynamics. In what follows,
all the applications displayed use graphical visualizations in openGL for a molecular dynamics
simulation of a magnetic liquid.

2. Shared Memory

To use the Shared Memory we need to allocate a memory segment. The function in C or C++ to
allocate memory is called shmget (“SHared Memory GET”). Its first parameter is an integer that
identifies which segment must be created. All processes can access the same memory segment
by specifying this key. The second parameter specifies the number of bytes in memory segment.
The third parameter is related to the flag values that specify several options to the shmget
function. In the example below we show a C code fragment that creates a memory segment.

#inc lude <sys / ipc . h>
#inc lude <sys /shm . h>

#de f i n e SHMSZ 100 // s i z e o f memory segment (100 bytes)

i n t main (i n t argc , char ∗ argv [])
{

i n t key , shmid ;

key = 11 ; // i d e n t i f i e s the memory segment

// shmget : the f l a g s IPC CREAT | 0666 check i f the segment
// e x i s t and s e t the segment as a read and wr i t e . See
// more f l a g s in shmget he lp .
i f ((shmid = shmget (key , SHMSZ, IPC CREAT | 0666)) < 0) {

per ro r (‘ ‘ shmget ’ ’) ;
r e turn 1 ;

}

VII Brazilian Meeting on Simulational Physics IOP Publishing
Journal of Physics: Conference Series 487 (2014) 012014 doi:10.1088/1742-6596/487/1/012014

2

r e turn 0 ;
}

Next we need to make the Shared Memory segment available. We must use shmat,(“SHared
Memory ATach”). This function uses as a first argument the identifier shmid returned by the
shmget.The second argument is a pointer that specifies where inside our processes address we
want to map the Shared Memory. It is easier to let the operational system decide what to do.
This can be done only specifying it as NULL. The third argument is a flag. We show in the
following the code to be used to attach the memory segment.

#inc lude <sys / ipc . h>
#inc lude <sys /shm . h>

i n t main (i n t argc , char ∗ argv [])
{

double ∗shm ;

i f ((shm=(double ∗) shmat (shmid , NULL, 0)) == (double ∗) −1){
per ro r (‘ ‘ shmat ’ ’) ;
r e turn 1 ;

r e turn 0 ;
}

Now you can use the memory segment shm like a double array.

i n t main (i n t argc , char ∗ argv [])
{

. . .

f o r (i n t i =0; i<number of double ; i++){
shm [i]=0 . 0 ;
}

. . .

r e turn 0 ;
}

To detach the Shared Memory segment we use the function shmdt.

i n t main (i n t argc , char ∗ argv [])
{

. . .

shmdt (shm) ;
. . .

VII Brazilian Meeting on Simulational Physics IOP Publishing
Journal of Physics: Conference Series 487 (2014) 012014 doi:10.1088/1742-6596/487/1/012014

3

Figure 2. The Molecular Dynamics program can read and write in Shared Memory, but
Visualization program just can read.

re turn 0 ;
}

To remove a Shared Memory segment we need to use the function shmctl (“SHared Memory
Control”). This function uses the id of a segment as a first parameter, a flag IPC RMID as a
second argument and a NULL pointer as a third.

i n t main (i n t argc , char ∗ argv [])
{

. . .

shmctl (shmid , IPC RMID,NULL) ;
. . .

r e turn 0 ;
}

For pedagogical purposes, we employ this technique to visualize a Molecular Dynamics
simulation (MD). To make a real time simulation we need to put all these functions with “create”,
“attach”, “detach” and “destroy” Shared Memory segments into the simulation code. Typically
we need to use these functions to create 3 arrays of double precision to store x, y and z, the
spatial coordinates, and 3 arrays of double precision to store Vx, Vy and Vz for the velocities.
Fig. (2) shows how the MD simulation and Visualization works with a Shared Memory.

In the visualization program we use the same code as before, but in the third parameter of
shmget we use a flag “read only” to prevent the visualization program to change any value in
the arrays of the positions or the velocities.

#inc lude <sys / ipc . h>

VII Brazilian Meeting on Simulational Physics IOP Publishing
Journal of Physics: Conference Series 487 (2014) 012014 doi:10.1088/1742-6596/487/1/012014

4

(a) (b) (c) (d) (e) (f)

Figure 3. (Color online) The visualization configurations for several temperatures, e.g,
T = 0.01, 0.2, 0.4, 0.6, 0.8, 1.0.

#inc lude <sys /shm . h>

#de f i n e SHMSZ // s i z e o f memory segment

i n t main (i n t argc , char ∗ argv [])
{

i n t key , shmid ;
double ∗shm ;

key = 11 ; // i d e n t i f i e s the memory segment

// shmget : the f l a g s IPC CREAT | 0444 check i f the segment
// e x i s t and s e t the segment as a read only . See
// more f l a g s in shmget he lp .
i f ((shmid = shmget (key , SHMSZ, IPC CREAT | 0444)) < 0) {

per ro r (‘ ‘ shmget ’ ’) ;
r e turn 1 ;

}

// attach the segment shm in program
i f ((shm=(double ∗) shmat (shmid , NULL, 0)) == (double ∗) −1){

per ro r (‘ ‘ shmat ’ ’) ;
r e turn 1 ;

// here we can read the value o f shm
f o r (i n t i =0; i<number of double ; i++){
p r i n t f (‘ ‘%d/n ’ ’ , shm [i]) ;
}

. . .

r e turn 0 ;
}

To visualize the MD simulation we use the freeglut library in openGL [10]. In Fig. (3) we
display some configurations after the equilibration of the system for temperatures varying from
T = 0.01 to T = 1.0. Here we use reduced units [9] with the temperature given in units of

VII Brazilian Meeting on Simulational Physics IOP Publishing
Journal of Physics: Conference Series 487 (2014) 012014 doi:10.1088/1742-6596/487/1/012014

5

ε/kB ≈ 120K and distances in units of σ, where ε and σ are the Lennard-Jones parameters and
kB the Boltzmann constant.

In a system with a considerable number of particles it is important to optimize the
computational effort during the calculations. In a multi-core architecture the operational system
does the tough task of separating the jobs between the cores. This does not forbid us to use
other parallel schemes like the multithread technique, but this is out of scope of this work. With
the help of the Shared Memory scheme we are able to switch on all the visualizations we want
to see, separated from the computation of the MD simulations. As mentioned before we need
only to enumerate the Shared Memory for each calculation in both the MD simulation and the
openGL visualization programs without any interference between each other.

To illustrate the application we plot some radial distribution functions for the visualised
configurations in Fig (4). The formation of the clusters can be seen as the temperature is
decreased. However, in Fig. (3) we can see not only the clusters but also the structure formed in
real time. The advantage of visualizing the simulations becomes more apparent in systems with
magnetic properties like magnetic fluids [9]. Some characteristics are intrinsic for these systems
like domain walls and vortex patterns in which the visualization is better suited.

0 1 2 3 4 5 6
Distance

0

5

10

15

20

25

30

R
ad

ia
l D

is
tri

bu
iti

on

T=0.01

(a)

0 1 2 3 4 5 6
Distance

0

5

10

15

20

R
ad

ia
l D

is
tri

bu
iti

on

T=0.2

(b)

0 1 2 3 4 5 6
Distance

0

2

4

6

8

R
ad

ia
l D

is
tri

bu
iti

on

T=0.4

(c)

0 1 2 3 4 5 6
Distance

0

1

2

3

4

5

6

R
ad

ia
l D

is
tri

bu
iti

on

T=0.6

(d)

0 1 2 3 4 5 6
Distance

0

1

2

3

4

R
ad

ia
l D

is
tri

bu
iti

on

T=0.8

(e)

0 1 2 3 4 5 6
Distance

0

0.5

1

1.5

2

2.5

3

R
ad

ia
l D

is
tri

bu
iti

on

T=1.0

(f)

Figure 4. (Color online) The respective radial distribution functions for the configurations in
Fig. 3.

VII Brazilian Meeting on Simulational Physics IOP Publishing
Journal of Physics: Conference Series 487 (2014) 012014 doi:10.1088/1742-6596/487/1/012014

6

3. Conclusions

The Shared Memory technique for the visualization of the simulations “on the fly” was presented.
This technique for parallelization of the computation and the visualization of the simulations
became accessible with the development of the multi-core technology as well as the expansion of
the RAM memory. With the help of the openGL library the simulations on particle systems can
be easily visualized. Consequently, the study of some physical phenomena like cluster formation,
domain walls and vortex patterns in magnetic systems get another dimension. This integration
between science and visualization is of paramount importance, either as an efficient debugger or
as a tool to understand the simulated physical model.

Acknowledgments

The authors thank Dr. B. V. Costa for valuable discussions during the elaboration of this work.

References
[1] P. A. Fishwick Web-based Simulation: Some Personal Observations, Proceedings of the 1996 Winter

Simulation Conference, vol. 96, pp.772 -779 1996
[2] C. Monserrata, U. Meierb, M. Alcaizb, F. Chinestac, M.C. Juana A new approach for the real-time simulation

of tissue deformations in surgery simulation, Computer Methods and Programs in Biomedicine, Volume
64, Issue 2, February 2001, Pages 7785

[3] William Humphrey, Andrew Dalke, Klaus Schulten VMD: Visual molecular dynamics, Journal of Molecular
Graphics, Volume 14, Issue 1, February 1996, Pages 3338

[4] M.W. Berry, Massive Data Visualization, Computing in Science &, Engineering, Vol. 1, No. 4, 1999, pp.
16-17

[5] Ananth Grama, George Karypis, Vipin Kumar, Anshul Gupta Introduction to Parallel Computing, 2nd ed.
,Pearson Education, Harlow, England.

[6] Peter Pacheco An Introduction to Parallel Programming, Elsevier, USA.
[7] Georg Hager, Gerhard Wellein Introduction to High Performance Computing for Scientists and Engineers

(Chapman & Hall/CRC Computational Science), CRC Press, Boca Raton, FL.
[8] Barbara Chapman, Gabriele Jost, Ruud van van der Pas Using OpenMP: Portable Shared Memory Parallel

Programming (Scientific and Engineering Computation), The MIT Press, Cambridge, Massachusetts.
[9] Eberth Correa, A. B. Lima and B. V. Costa, Int. J. Mod. Phys. C, Vol. 23, No. 4 (2012) 1250026.

[10] Dave Shreiner and Bill The Khronos OpenGL ARB Working Group, OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Addison-Wesley, Michigan, USA.

VII Brazilian Meeting on Simulational Physics IOP Publishing
Journal of Physics: Conference Series 487 (2014) 012014 doi:10.1088/1742-6596/487/1/012014

7

