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Abstract. We review parallel tempering schemes and examine their main ingredients for
accuracy and efficiency. We discuss two selection methods of temperatures and some alternatives
for the exchange of replicas, including all-pair exchange methods. We measure specific heat
errors and round-trip efficiency using the two-dimensional (2D) Ising model, and also test the
efficiency for the ground state production in 3D spin glass models. We find that the optimization
of the GS problem is highly influenced by the choice of the temperature range of the PT process.
Finally, we present numerical evidence concerning the universality aspects of an anisotropic case
of the 3D spin-glass model.

1. Introduction
Parallel tempering (PT) or replica exchange is a Markov Chain Monte Carlo sampling method
[1, 2, 3, 4, 5, 6, 7] that tends to become the method of choice in simulating complex systems where
effective potentials have a complicated rugged landscape with many minima and maxima which
become more pronounced with increasing system size [8, 9, 10, 11]. This behavior is encountered
in spin glasses, where PT is widely used [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. Unlike Metropolis algorithm [36], where a single system
is sampled in one temperature, in PT several replicas of the system evolve in their individual
temperatures by local moves and exchange attempts between replicas are performed periodically
(swap moves). This procedure gives PT the ability to roam more freely on the rugged energy
landscape of complex systems. In PT,M replicas perform a number local moves, that is a number
of MC steps not necessarily the same for each replica in their individual temperatures, and then
an exchange (or swap) attempt between replicas is proposed. A successful implementation of
PT sampling demands the selection of a suitable method for each part of the procedure and its
fine-tuning. Initially one has to determine the temperature sequence of the replicas, then one
has to decide which algorithm will be used for the local moves of the replicas, and how many
local moves will be attempted for each replica before an exchange attempt. The algorithm for
swapping replicas is also a basic ingredient of PT. Swapping algorithms between replicas which
are adjacent in temperatures, is the most common practice. These algorithms will be denoted
as (NN)x, meaning nearest neighbor exchange according to some ordering specified by the sub-
index x. Their alternatives are the all-pair exchange attempts (APE) methods and their recently
proposed kinetic versions [37, 38].

In the present paper, we shall consider PT protocols with a variety of different ingredients.
We test two methods for the temperature sequences. The widely used constant acceptance
exchange (CAE) [6, 7, 39, 40], where the rate of successful swap attempts between replicas is
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constant, and the constant entropy increase (CEI) method introduced by Sabo et al. [41], where
as its name declares requires a constant increase in entropy between successive temperatures.
Three different algorithms are used to perform local moves. The Metropolis algorithm, the n-fold
or BKL algorithm [42, 43, 44, 45], and the cluster algorithm of Wolff (W) [42, 46, 47]. Some
APE and (NN)x algorithms for the replicas’ swapping procedure are implemented and tested.
Numerical tests, involving measurements for the specific heat errors and round-trip efficiency,
are carried out for the square Ising model. Comparative tests are presented for the ground state
problem in 3D spin-glass models. In our final section, we consider an anisotropic bimodal 3D
spin glass model and discuss its universality properties. This model is a particular case of a
more general (anisotropic) bimodal spin glass model [48, 49], defined by the Hamiltonian

H = −
∑
u

∑
⟨ij⟩u

Ju
ijsisj , (1)

where the exchange interactions are uncorrelated quenched random variables, taking the values
±Jxy on the xy planes and the values ±Jz on the z axis. The bimodal distribution of Ju

ij takes
the general form

P (Ju
ij) = puδ(J

u
ij + Ju) + (1− pu)δ(J

u
ij − Ju), (2)

where u denotes the z axis (u = z) or the xy planes (u = xy), Ju denotes the corresponding
exchange interaction strength and pu are the probabilities of two neighboring spins (ij) having
antiferromagnetic interaction. The standard isotropic 3D Edwards-Anderson bimodal (EAB)
model [14, 12], corresponds to Jz = Jxy = J(= 1) and pz = pxy. The anisotropic case considered
in our studies is the model pz = 0; pxy ≤ 1

2 with Jz = Jxy = J(= 1) [49].

2. Parallel Tempering (PT) Protocols
There is a rather large number of ideas that have been proposed in the last decade for the
selection of temperatures in a PT protocol [37, 38, 40, 41, 50, 51, 52, 53, 54]. According to
the approach followed by Katzgraber et al. [50], optimal temperature selection corresponds to
the maximum rate of round trips between low and high temperatures in temperature space and
can be obtained using a recursive readjustment of temperatures. Here we will consider two
simpler but important methods. The CAE method, when used with appropriate number of
sweeps between replica exchanges, was found to optimize the round-trip time [40]. To obtain
the temperatures corresponding to a CAE rate r we follow here Ref. [40]. Starting from a
chosen lowest temperature, adjacent temperatures are determined by calculating the acceptance
exchange rate from

R(1 ↔ 2) =
∑
E1,E2

PT1(E1)PT2(E2)p(E1, T1 ↔ E2, T2), (3)

where PTi(Ei) is the energy probability density function for replica i at temperature Ti and

p(E1, T1 ↔ E2, T2) = min[1, exp(∆β∆E)], (4)

is the PT probability to accept a proposed exchange of two replicas, with ∆β = 1/T2 − 1/T1

and ∆E = E2 − E1. Demanding R(1 ↔ 2) = r for all adjacent replicas, we obtain the
temperatures of the required CAE sequence (from the above equations), provided that the
energy probability density functions (PDFs) are known, or can be reasonably well approximated
by some preliminary MC runs.

The second method requires a constant increase in entropy between successive
temperatures [41]. Following Sabo et al. [41], we denote the M temperatures of the CEI sequence
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by (Tm;m = 1, ...,M) and the total increase in entropy from T1 to TM by ∆S. Then the adjacent
temperatures are determined starting from the given T1 successively from∫ Tm+1

Tm

dT
Cu(T )

T
=

∆S

(M − 1)
, (5)

where the specific heat at any temperature can be calculated also from preliminary MC runs
(single replica or PT) and histogram methods [46, 42].

Using such a preliminary PT run, we determine both CAE and CEI T-sequences in a
temperature range centered around the pseudo-critical temperature of the specific heat of the
square Ising model with linear size L = 50 (N = LD = L2 is the number of lattice sites). This is
carried out, in a unified implementation, by appropriate recursive schemes, and then by repeating
a Metropolis run at these T-sequences we estimate their canonical correlation times [42]. This
practice can be applied to a general system for which the DOS is not known, applying in the
first preliminary run (especially in a spin glass system) a PT protocol in an ad-hoc reasonable
set of temperatures. For the CAE selection, we start from T1 = 1.9200 (we set J/kB = 1) and
proceed to find higher temperatures corresponding to r = 0.5, reaching after a total number of
temperatures M = 19 the temperature TM = 2.6903. We also apply the CEI procedure with
M = 19 between the same T1 = 1.9200 and a final temperature TM = 2.6975. Thus, the two
schemes are defined approximately in the same temperature range with the same number of
replicas.
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Figure 1. Temperature sequences for
the CAE and CEI selection methods.
Illustration of the corresponding canonical
correlation times. The vertical dotted line
indicates the specific heat maximum at
T ∗
C = 2.285 for L = 50.
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Figure 2. Illustration of the acceptance
rates between adjacent replicas for the CAE
and CEI selection methods. The vertical
dotted line indicates again the specific heat
maximum as in Figure 1.

Figure 1 illustrates the two T-sequences obtained according to the above description. In this
illustration we display, for the CAE and CEI selection methods, the corresponding temperature
sequences with their canonical correlation times, estimated from the discrete form of the energy
autocorrelation function [42], in units of lattice sweeps (N Metropolis attempts). Figure 2
illustrates the acceptance rates between adjacent replicas for the two methods. The two methods
produce temperature sequences that are more concentrated in the temperature range where the
specific heat has a maximum (dotted lines in the figures), with the CEI method producing a more
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dense set close to the maximum point, and this is reflected in the variation of the acceptance
rates of the CEI method.

We now discuss alternatives for the ordering of the exchange attempts. Mixing local MC
attempts with swap attempts is essential in the PT procedure. It is this feature that enables
an ergodic walk in temperature space, transferring information between the highest and lowest
temperatures. Most PT protocols use NN exchanges, but recently PT protocols using APE
methods have also been implemented [37, 38]. In a NN exchange protocol only adjacent
exchange attempts are proposed. There are exactly M−1 different NN proposals and these may
be uniquely denoted by the lowest temperature index i = 1, ...,M − 1. We have implemented
four different algorithms, denoted as (NN)a,(NN)b,(NN)c, and (NN)d, for the ordering of the
NN proposals. In (NN)a, a random permutation (say: j1, ..., jM−1) is generated, from the set
i = 1, ...,M − 1, and this permutation is used in an exchange swap cycle of M − 1 proposals.
Thus, swap moves are organized in cycles of M−1 proposals, and such a swap cycle (SC) may be
used in defining the unit of time of an elementary PT step. In (NN)b, the lowest temperature
index (i) is randomly chosen from the set i = 1, ...,M − 1 and therefore multiple exchanges
of the same pair are allowed in the swap cycle. In (NN)c, the sequence of proposals is fully
deterministic, consisting of two swap sub-cycles, starting from the odd proposals i = 1, 3, ..., in
increasing order, and continuing with the even proposals i = 2, 4, .... This is a most widespread
sequential update algorithm, supposed to speed-up the diffusion process. Finally, in (NN)d, the
odd and even sub-sequences are randomly permuted before starting the odd and following with
the even swap sub-cycles.

In PT protocols using APE methods, adjacent or not adjacent replicas may be exchanged
(xi ↔ xj). In these methods, the number of possible proposals (A → B) is M(M − 1)/2, A =
{x1, x2, ..., xi, ..., xj , ..., xM} and B = {x1, x2, ..., xj , ..., xi, ..., xM}. In the simplest case, for each
proposal a pair (xi, xj) is randomly chosen from the set of all M(M − 1)/2 different pairs. The
generation of exchange attempts proceeds with equal probabilities, Pgen(A → B) = Pgen(B →
A) = 1/[M(M − 1)/2], and the acceptance/rejection rule follows the Metropolis form, with an
acceptance rate Pacc(A → B) = p(xi ↔ xj), given by Eq. (4). The swap attempts satisfy the
detailed balance condition P (A)Pgen(A → B)Pacc(A → B) = P (B)Pgen(B → A)Pacc(B → A),
with P (A) = ρ(x1)ρ(x2)...ρ(xM ), the product probability distribution, which becomes stationary
with respect to the swap attempts. This is a simple APE method denoted here by APEM , where
the sub-index stands for the above Metropolis form of exchange acceptance rate. A different
APE algorithm, denoted by APEB, is the kinetic method of Brenner et al. [38]. The kinetic
swapping procedure, involves explicitly only the K = M(M − 1)/2 transitions of the form
A → B ̸= A (j = 1, 2, ...,K) with selection probabilities Pj = Pacc(A → B)Pgen(A → B),

and Pgen(A → B) = 1/max

{ ∑
M∈Φ

Pacc(A → M),
∑
L∈Ψ

Pacc(B → L)

}
. Further details of such

methods can be found in the original article [38] and in [55].
A PT step (PTS), is the elementary MC step used for the recording (measuring or averaging)

process during an independent MC run. A PTS consists of one or several swap cycles of M − 1
replica exchange attempts, and we shall be using the same definition, for simplicity, in the case
of the APE method also. After each exchange attempt, all replicas perform a number of local
moves (spin flips or cluster moves) at their current temperatures. The number of local moves
n(Ti), may vary with temperature and the total number of local moves (for any temperature in a
SC) is Nlocal(T ) = (M−1)n(T ). Without loss of generality, we will define the PTS to be just one
SC. We may differentiate between various protocols by varying the number of local moves and
we also are able to set Nlocal(T ) = f(T )τ(T )N , where τ(T ) are the canonical correlation times
and f(T ) are factors facilitating the adaption of the number of local moves n(T ). Note, that
Nlocal(T ) = N , corresponds to the standard lattice sweep. A first (disregarding) equilibration
part of the simulation consist of teq PTSs, and then a large number of PTSs (tav) is used for
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recording and averaging. Local MC moves are carried out by the Metropolis algorithm, the n-
fold way algorithm and the cluster Wolff algorithm. We also use large numbers of independent
MC runs (Nr) to obtain accurate estimates of our measures. In order to compare PT schemes,
we also adapt time parameters in a consistent way so as to get approximately the same CPU
time.

3. Comparing PT protocols
3.1. Testing PT protocols using the 2D Ising model
We now present some tests on PT protocols, obtained by combining a variety of features
mentioned above. We begin with tests carried out on the L=50 square ferromagnetic Ising
system with periodic boundary conditions. For this model we have used the exact DOS [56] to
calculate the values of the specific heat at the PT protocol temperatures and thus we determine
the following error-measures

ϵ(Ti) = [Cexact(Ti)− CPT (Ti)]/Cexact(Ti), (6)

ϵ̄ =
M∑
i=1

ϵ(Ti)/M, (7) ϵ̂ =
M∑
i=1

|ϵ(Ti)|/M, (8) ϵ∗ = max(|ϵ(Ti)|), (9)

For (NN)x exchange algorithms, which use the Metropolis algorithm as a local algorithm, we
found that the above specific heat errors are very small and are all of the same order, with no
statistically significant difference between them [55]. Thus, hereafter we shall use the (NN)a
PT protocol and vary the other ingredients of the schemes.

Fig. 3, illustrates the errors ϵ(Ti) of two NN and two APE protocols using both the CEI
and CAE selections. For all protocols in Fig. 3 the Metropolis algorithm has been used for the
local moves. The number of independent MC runs is Nr = 200, with teq = 3N , tav = 15N
and Nlocal(T ) = (M − 1)n(T ) = N , where M = 19 is the number of temperatures. The error-
measures, ϵ̄, ϵ̂, and ϵ∗, as defined above in Eq. (7), Eq. (8) and Eq. (9) are given, in parenthesis,
on the panels of our figures. As can be seen from this figure, the specific heat errors of the
(NN)a protocols are much smaller than the corresponding errors of the APE protocols. The
CAE and CEI selections give comparable accuracy. The APEB protocol suffers from very large
specific heat errors that are more pronounced close to the specific heat maximum. This erratic
behavior, is a subtle reflection of the kinetic character of the APEB method [38]. On the other
hand, the APEM protocol, which is a standard PT protocol also allowing distant (Metropolis)
exchange attempts, shows reasonable error behavior.

Let us now discuss PT cases using different local algorithms. Fig. 4 illustrates specific heat
error behavior of PT protocols, performing local moves with the Wolff cluster algorithm (W),
and the one-spin flip n-fold way or BKL algorithm. Only the CAE selection method has been
used, and in an obvious notation, the protocols are denoted by [BKL, (NN)a], [BKL,APEB],
[W, (NN)a], and [W,APEB], corresponding to (NN)a and the APEB methods. The number of
independent MC runs is Nr = 200. The protocols using the BKL algorithm, as local algorithm,
use teq = 3N , tav = 15N , and a reduced number of local moves Nlocal(T ) = (M − 1)n(T ) =
0.216N . This choice corresponds to n(T ) = 30 BKL spin flips for each replica after a swap
move and makes the time requirement of the BKL protocols approximately equivalent to the
corresponding Metropolis protocols. For the PT protocols using the Wolff algorithm, we used
teq = 3N/50, tav = N , and Nlocal(T ) = (M − 1)n(T ) = 0.0216N , which corresponds to
n(T ) = 3 Wolff cluster flips after each exchange attempt. The adjustments are now reflecting
the small dynamical exponent of the Wolff algorithm, and produce approximately the same time
requirements as the PT protocols (of Fig. 3) using Metropolis algorithm.

By comparing the error-measures of the APEB protocol of Fig. 3, which uses the Metropolis
algorithm for the local moves, with the error-measures of the present APEB protocols of
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Figure 3. Specific heat errors for four
different PT protocols using Metropolis
algorithm for local moves. Error-measures,
in parenthesis, as defined in Eq. (7), Eq. (8)
and Eq. (9).
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Figure 4. Behavior of PT protocols using
n-fold way (BKL) algorithm and the Wolff
cluster algorithm (W) for local moves.
Only CAE selection of temperatures has
been used.

Fig. 4, we observe clear improvement in the behavior of the illustrated error-measures. The
improvement is substantial in the case of the [W,APEB] protocol and moderate in the case of
the [BKL,APEB] protocol.

The efficiency of PT protocols is often characterized by measures indicating difficulties in the
flow (bottleneck effects) as a replica moves from the high to low temperature and vise versa.
Such a measure is the number of swap moves required to transfer any replica from the highest
(lowest) temperature to the lowest (highest), and vise versa. Let the average number of exchange
attempts required to transfer any replica from the highest (lowest) temperature to the lowest
(highest) be denoted by uj (dj) for the corresponding transfer, averaged over the PTSs of a long
independent run j (j = 1, 2, ..., Nr) and over the M different replicas of the PT protocol. Using
these numbers we may define the average round-trip time (uj + dj). Since, these quantities are
strongly fluctuating (in the ensemble of Nr independent runs) it is more convenient to define
and illustrate their behavior using running averages, defined bellow

[(u+ d)]k =

k∑
j=1

(uj + dj)/k, (10)

where k = 1, 2, ..., Nr.
Figure 5 provides an illustration of the running averages of Eq. (10) for several PT protocols.

All protocols in Figure 5 are using the Metropolis algorithm for local moves, teq = 3N , and
tav = 15N . The four protocols in the main panel use local time Nlocal(T ) = N , while the three
PT protocols in the inset use Nlocal(T ) = τ(T )N . In the notation, we have included also the
numbers of independent runs Nr = 200 and Nr = 20 respectively as indicated in the legends (all
protocols require approximately the same CPU time). By comparing the behavior in the panel
and in the inset, we observe a strong influence of the number of local moves on the efficiency
measure defined in Eq. (10). This is in accordance with the study of by Bittner et al. [40],
verifying that a choice of the numbers of local moves, related to the canonical correlation times
increases the efficiency of PT protocols. We also point out that the influence of temperature
selection method is of minor importance, and that APEB method yields a noticeable but not
significant improvement.

Now, let us consider the behavior of the four PT protocols of Fig. 4, which use the Wolff
cluster algorithm (W), and the BKL algorithm for local moves. Since, we have used different
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Figure 6. Running averages of tav/[u+d]k
(≈ number of round-trips per replica).

tav, we will now illustrate the behavior of running averages of the mean number of round trips
per replica. The total number of swap moves in one independent run is (M − 1)tav, and thus
(M − 1)tav/(M [u + d]k) ≈ tav/[u + d]k, measures approximately the mean number of round
trips per replica. In Fig. 6, we have plotted the running averages of this quantity for the four
PT protocols of Fig. 4, mentioned above. Comparing the two exchange methods we observe
that, the APEB method produces significant improvements in transfer efficiency. In the case of
the [W,APEB] PT protocol, the improvement, compared with the [W, (NN)a] protocol, is very
pronounced indicating also the strong influence of the local algorithm on the APEB method.
Of course, for each protocol the optimum in transfer efficiency will depend on a careful choice
of the local times. The fast restoration of equilibrium that takes place after the Wolff local
moves may be responsible for the improved behavior of the [W,APEB] protocol observed in
both Fig. 4 and Fig. 6 . Thus, the tests on the Ising model have illustrated some of the merits
and weaknesses of the selected PT schemes. However, the real power of PT methods, should
be checked in rare-event problems in which the performance of conventional MC methods can
become unreliable.

3.2. Testing PT protocols using the 3D EAB spin-glass model
Several studies have been carried out for determining true ground states (GS) of the (isotropic)
3D EAB model [11, 33, 34, 35, 57, 58]. Romá et al. [58] have addressed the question of whether
it is more efficient, in order to find a true GS, to use large running times or several independent
runs (tav and Nr in our notation) for each realization of the disorder, called henceforth sample.
The collapse example in Fig. 2b of their article, shows clearly that increasing the number of
PTSs (tav), has approximately the same effect with an analogous increase in the number of
independent runs (Nr) for each sample. The production of a true GS depends essentially on the
product Nrtav. They have concentrated mainly on estimating the times necessary for generating
true GS with a given probability. We have use this information in constructing the tests of this
section, and also in undertaking the GS study for the anisotropic model in the next section.

We implement here two single spin-flip local algorithms, the Metropolis and the BKL
algorithm, and try to observe the relative efficiency of the resulting protocols. We are interested
in the dependence on the chosen local algorithm, and in the influence of the exchange method.
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In order to illustrate the relative efficiency of the resulting PT protocols, we will first try to
adjust the PT parameters in an approach requiring approximately the same CPU time for all
protocols. This may be attempted by adjusting the local times of the protocols. However,
as was pointed out in [55], the implementation of the APEB method requires additional CPU
time. This additional time comes from the involved recalculation of selection probabilities before
each swap move. The relative time complexity of the method depends on the ratio between
the local and averaging times, and increases considerably when we use a PT protocol with
many temperatures. This obvious drawback of the method will be handled by restricting the
possible remote exchanges only to significant exchanges (up to forth order), as was explained and
implemented in [55]. Time differences, between (NN)a and APEB exchange methods, remain
considerable, even with the above restriction, in cases where the T-sequences consist of many
temperatures. In such cases, we shall ignore the different time requirements of the exchange
methods, and compare protocols with the same local time, because otherwise their adjustments
may result in using inappropriately small local times for the APEB method. We observe and
compare their performances, albeit this practice favors the APEB exchange method.

Each sample has its own peculiarities and these are reflected on the T-sequences obtained
by a specified temperature selection method. In general, the dependence of T-sequence on the
particular samples is very weak, and for our purposes it is more practical to use the same T-
sequence for all samples. Thus, we average over T-sequences of a moderate number of 5 − 10
samples, and then we use the averaged sequence for all samples included in our tests. Swap moves
are attempted by (NN)a, APEM and APEB methods. Numerical evidence for the performance
of PT protocols, will be presented with the help of the sample averaged probability [P ] for
producing true GS. This will be obtained from a relatively large set of Ns samples (Ns = 100),
and from a relatively small set of Ns samples (Ns = 5). In the later case, as discussed in more
detail bellow, the set is chosen to contain the hardest samples of the larger set. The sample

averaged probability is defined by [P ] =
Ns∑
j=1

Pj/Ns, where Pj = nj/Nr is the probability of

reaching a GS for the jth sample. The probability Pj of reaching a true GS, is calculated from
the nj successful runs in a total number of independent Nr runs, carried out for each of the Ns

samples.
Easy and hard samples exist with very different behavior [58], and in a large ensemble of

samples the hardest samples have the smallest Pj . The sample averaged [P ], reflects the average
performance of the PT protocols for the particular set of samples. If Ns is relatively large, the
value of [P ] may be assumed to be a fair representative of efficiency measure for each protocol.
However, we will be working in a regime of parameters, where for practically all relatively easy
samples the probability Pj is ≈ 1.0. Note that, in order to verify that true GSs were found for
each sample, we have used independent very long runs, with times longer than those derived by
Ref. [58] for obtaining a true GS with probability ≥ 0.999. In the case of a small set of samples,
[P ] is a less objective measure, but the choice of hardest samples magnifies the differences
between the protocols, which are thus more easily observed.

In [55], we have presented comparative tests for the 3D EAB spin-glass, carried out for a cubic
lattice with linear size L = 6. We found that the results for the CAE T-sequence were slightly
better, but not significantly different, from the corresponding results for the CEI T-sequence.
Furthermore, the superiority of the BKL algorithm, compared to the Metropolis algorithm, was
firmly established. Also, we observed that the all-pair exchange APEM method deteriorates the
production process of GSs, while the APEB method produced a noticeable improvement. Here,
we shall use, in all our tests, a cubic lattice with linear size L = 8 and T-sequences only by the
CAE selection method.

In our first test, we consider an ensemble of Ns = 100 samples and implement a temperature
sequence corresponding to a constant acceptance rate r = 0.1, producing as explained above, an
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averaged sequence of M = 9 temperatures in the range T = 0.4 − 2.5. The difference between
BKL and Metropolis updates is taken into account by adjusting the local time by a factor of
the order ≈ 4, in favor of the corresponding Metropolis PT protocols. For the simplest protocol
[M, (NN)a], we set Nlocal(T ) = (M − 1)n(T ) = N(= L3), which corresponds to n(T ) = 64
Metropolis spin-flip attempts for all replicas after each swap move. Local time for the other
protocols is determined by short preliminary runs. In a particular run with tav = 5N and
Nr = 600, we used n(T ) = 64, n(T ) = 18, and n(T ) = 16 for the [M, (NN)a], [BKL, (NN)a],
and [BKL,APEB] protocols resulting in 1742, 1675 and 1806 CPU minutes respectively. Thus,
in our first test we tried to compare PT protocols using approximately the same CPU time by
varying tav.

The behavior of the protocols [M, (NN)a], [M,APEB], [BKL, (NN)a], [BKL,APEB], and
[BKL,APEM ], by varying the running time parameter tav, is illustrated in Fig. 7. APEB

method, in the [BKL,APEB] protocol, produces a marginal improvement in the large tav range,
when compared with the corresponding NN protocol [BKL, (NN)a]. On the other hand APEM

method, in the [BKL,APEM ] protocol, seems to worsen the production process of GSs, when
compared with the [BKL, (NN)a] protocol. The superiority of the BKL local algorithm is very
clearly revealed by comparing the corresponding PT protocols with those using a Metropolis
local algorithm. Noteworthy is also that n-fold way updates have been also the basis of some
previous searches for GSs of spin glasses [59, 60, 61]. The picture emerging from the above
test is very similar with that discussed in [55]. Nevertheless, APEB method was found, in our
study of the 2D Ising model, to be sensitive to the local time used, as can be seen also in Fig. 5.
APEB may also be sensitive to the spacing of temperatures, in the temperature sequence used,
since it is possible that denser sequences may facilitate remote exchanges. We consider these
possibilities in the following tests.
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PT methods using CAE with r=0.1(M=9)

Figure 7. Performance of PT protocols, with local time adjusted to produce approximately the
same CPU time.

We now ignore the additional CPU time of the APEB method, and try to compare it with
the (NN)a method, using exactly the same local time in the corresponding PT protocols.
We consider the performance of only the two most efficient protocols [BKL, (NN)a], and
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[BKL,APEB] protocols and also we implement a more dense T-sequence, the CAE T-sequence
with r = 0.5, corresponding to M = 21 temperatures (approximately in the same temperature
range). The dependence of the efficiency of APEB method on local time is first inspected.
We fix the number of PTSs to a value tav = 10N , and vary the local time as follows:
Nlocal(T ) ≈ (0.24N), 5(0.24N), 10(0.24N), 20(0.24N). Since M = 21, the number of BKL spin-
flips for all replicas after each swap attempt is correspondingly n(T ) = 6, 30, 61, 122. In order
to magnify the difference between the two exchange methods, we also restrict our tests only in
the set of the five hardest realizations chosen from the original ensemble of Ns = 100 samples.
Fig. 8, demonstrates that, as we increase local times APEB method becomes more efficient from
(NN)a method. This is, of course, in agreement with the behavior observed in Fig. 4. APEB

method appears more effective when the exchanging spin configurations are less correlated.
However, the actual effectiveness of the APEB for the GS-problem is still undisclosed, as we
shall see bellow. From Fig. 8, APEB method is already superior to (NN)a method when
Nlocal(T ) = 5(0.24N) or n(T ) = 30. We now fix local time in that value, and vary the running
time: tav = 2N, 5N, 10N, 20N, 30N, 40N . Fig. 9 shows the performance of the two exchange
methods in this test, which we shall call test A. For the set of the five hardest realizations,
APEB method appears again to be more efficient in finding true GS, although we have to take
into consideration the fact that the local time chosen favors the APEB method.
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Figure 8. Performance of the exchange
methods as we vary local time n(T ), with
fixed tav = 10N .
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Figure 9. Performance of the exchange
methods (test A), with fixed local time
n(T ) = 30.

In the next test, which we call test B, we use again the same CAE T-sequence (M = 21),
but now we fix the local time to a lower level (n(T ) = 6) and vary the averaging time:
tav = 10N, 25N, 50N, 100N, 150N, 200N . A further third test, test C, was undertaken, in which
we consider only the lowest M = 7 temperatures of the r = 0.5 CAE T-sequence, in a T-
range: T = 0.4 − 0.967. In test C, we use local time n(T ) = 20 and vary the averaging time:
tav = 10N, 25N, 50N, 100N, 150N, 200N . Illustration in Fig. 10, contains the performance of
the two exchange methods for the three tests in a new x-scale, which is simply the total number
of BKL spin-flips divided by N , namely M(M − 1)n(T )tav/N . This is traditionally called total
number of BKL Monte Carlo steps (MCS), in one independent run of the protocols. The new
scale facilitates the comparison between points corresponding to the same value on the x-axis,
since differences in CPU time are now due only to the additional CPU time of the APEB

method. Both exchange methods, (NN)a and APEB, in tests B and C, produce comparable
results for the probability [P ] of the selected five hardest samples, and therefore one may insist
in using the simplest and faster (NN)a approach. Both tests B and C give higher values of [P ]
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Figure 10. Performance of exchange methods for tests A, B and C. All protocols use BKL
updates. Test C involves the lowest M = 7 temperatures of the r = 0.5 CAE T-sequence with
M = 21 temperatures.

than those of test A, and the previous minor superiority of the APEB method in Fig. 9 appears
now as an insignificant incidence of the particular choice of local time. It is very interesting that
C test, is by far the most efficient in producing true GS with much larger probabilities [P ].

To summarize, considering also the CPU time differences of the exchange methods, we observe
that test A, in which the APEB method appears to be a moderate winner, is not an optimum
choice for the production of GS. In the other two tests, the (NN)a and APEB exchange methods
produce comparable results. The search for true GS depends on several parameters of the PT
schemes, including the above mentioned ingredients, the number Nr of independent runs and, of
course, the temperature range used. A comprehensive study and critical examination of all these
factors appears necessary before optimality is claimed. Careful choice of the temperature range
emerges now as one of the most influential features for the optimization of the GS-problem,
which we believe that has not been recognized in previous studies.

4. Universality aspects of a 3D anisotropic spin-glass model
Recently, the spatially uniaxial anisotropic 3D EAB model pz = 0; pxy ≤ 1

2 with Jz = Jxy =
J(= 1), has been studied and its phase diagram has been estimated [49]. The phase diagrams for
both the isotropic Edwards-Anderson model and the present anisotropic model are reproduced
here in Fig. 11. The vertical solid line in this figure, indicates a ferromagnetic-paramagnetic (F-
P) phase transition for (pz = 0; pxy = 0.176). For this case, a detailed finite size scaling analysis
(FSS) was carried out in [49], and Fig. 12, illustrates the behavior of effective exponents for the
correlation length exponent at this point. The relevant estimation gives ν = 0.683(3), which is in
excellent agreement with the estimate ν = 0.6837(53) of the extensive numerical investigations
of Ballesteros et al. [62] for the site-diluted Ising model. This and similar findings for the
other critical exponents have demonstrated very clearly the universality for the ferromagnetic-
paramagnetic transitions, between the standard isotropic EAB model and the present anisotropic
model [49].
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Figure 13. Two methods for the estimation
of the phase diagram point Bani. A
linear extrapolation of crossings points of the
Binder’s fourth order cumulant, and a collapse
attempt on these cumulants.
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The phase diagram point Bani (open triangle on the phase diagram) corresponding to
(pz = 0, pxy = 1

2), appears to coincide with the isotopic phase diagram point B corresponding

to (pz = pxy = 1
2). Attempts to estimate the temperature of the Bani point appear in Fig. 13.

The numerical evidence presented is based on data for the Binder’s fourth order cumulant

(U = 1 − 1
3

(
[⟨q4⟩]
[⟨q2⟩]2

)
) where ⟨. . . ⟩ and [. . . ] denote thermal and disorder average respectively

and q the spin-glass overlap order parameter (q = 1
N

∑N
i=1 s

α
i s

β
i , where si denotes the spin

of site i and ”α” and ”β” represent two replicas of the same disorder realization). The inset
illustrates a linear extrapolation of the crossings points of Binder’s fourth order cumulants and
gives the estimate TBani = 1.07(4). In the main panel of Fig. 13, a data collapse for these
cumulants provide the estimate TBani = 1.111(25), very close to the corresponding estimate
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of the isotropic case TB = 1.109(10) [26]. The critical exponent 1/ν in the panel of Fig. 13
corresponds to the phase diagram point Bani. This gives for the correlation length exponent an
estimate ν = 2.43(15), in fair agreement for the exponent estimate obtained for the isotropic
case (phase diagram point B) ν = 2.39(5) given by Katzgraber et al. [32].

Finally, we consider the problem of ground states for the anisotropic model at (pz = 0, pxy =
0.5). Following the approach of [58], we produced estimates for the finite-size GS energy per
site for the anisotropic model. Our simulations cover the range of sizes L = 3 − 14, using the
PT protocol [CAE,BKL, (NN)a]. In all runs, we choose Nr = 1, use a short disregarding
part (teq = 2N) and vary the rest of the PT parameters in a way that the main running times
(tav) are comparable to those in Table B.3 of [58]. Fig. 14, presents the finite-size behavior
of the GS energy per site for both isotropic and anisotropic 3D EAB models. In the insets,
their differences are illustrated. In particular, it shown that their differences, for L ≥ 6 are
much smaller than the estimated errors. Therefore, the asymptotic limit of these GS energies
practically coincide. The two dashed lines in the main panel indicate previous asymptotic
estimations, namely u∞ = −1.7863(4) [64] and −1.7876(3) [65].

5. Summary and Conclusions
We reviewed several PT schemes and examined their accuracy and efficiency. Our tests on
the 2D Ising model suggest that the two methods of selecting temperature sequences (CAE
and CEI), produce results that are accurate and are almost equivalent in efficiency. Efficiency
of PT protocols is greatly increased by using number of local moves related to the canonical
correlation time. Wolff algorithm, when used for the local moves, greatly increases the efficiency
of the PT protocols. In particular, APEB method of Brenner et al. [38], when used with
local Wolff updates, was found both accurate and very efficient. Using the problem of GS
production of the 3D EAB model, we carried out a further comparative study of PT protocols.
Various implementations of the APE methods were compared with protocols based on the
(NN)a method, and a critical discussion on the routes for improving performance was carried
out. We also found that, a careful choice of the temperature range used for the PT is one of the
most influential features for the optimization of the GS-production.

Finally, we presented numerical evidence concerning some universality aspects of an
anisotropic case of the 3D spin-glass model. The emerging picture, from the illustrated
universality for the ferromagnetic-paramagnetic and spin-glass-paramagnetic transitions,
between the standard isotropic EAB model and the anisotropic model, supports the view that
the universality between the two models is a general feature covering the global phase diagram
of Fig. 11. The finite temperature phase diagram points between spin-glass and paramagnetic
phases appear to be very close, and we also presented numerical evidence that the asymptotic
limit of the GS energy of the isotropic (pz = pxy = 0.5) and the anisotropic (pz = 0, pxy = 0.5)
EAB models, are also very close, and possibly coincide.
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[58] Romá F, Risau-Gusman S, Ramı̀rez-Pastor A J, Nieto F and Vogel E 2009 Physica A 388 2821
[59] Hartmann A K and Rieger H 2004 New Optimization Algorithms in Physics (Berlin: Wiley-VCH)
[60] Boettcher S and Percus A G 2001 Phys. Rev. Lett. 86, 5211
[61] Dall J and Sibani P Computer Physics Communications 141 260
[62] Ballesteros H G, Fernández L A, Mart́ın-Mayor V, Muñoz Sudupe A, Parisi G and Ruiz-Lorenzo J J 1998
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