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Abstract. Extensive Monte Carlo simulations are used to locate the bicritical point of the
ferromagnetic anisotropic Heisenberg model on a simple cubic lattice in the presence of a crystal
field. In order to achieve this goal, we employ a hybrid algorithm comprising Metropolis and
Wolff algorithms along with field mixing. Multiple histogram techniques have also been used to
obtain the probability distribution function of the conjugate extensive variables of interest. In
conjunction with finite-size scaling analysis we computed the fourth-order cumulant of the order
parameter along the first-order line and the corresponding bicritical point has been located from
the crossings of the cumulants.

1. INTRODUCTION

In a recent paper [1], Plascak and Martins review the importance of the order parameter
probability distribution to investigate the critical properties and locate multicritical points
through Monte Carlo simulations in statistical mechanics models, in particular discrete state
models. This tool has been successfully employed along with field mixing techniques to locate
multicritical points, for example the double critical end point of the two-dimensional spin-3/2
Blume-Capel model [2], the tricritical point of a two-dimensional spin fluid [3], the asymmetric
Ising model [4], the two-dimensional Potts model [5], the three-dimensional XXZ model [6],
among others. In particular, we have already used this technique to locate the tricritical point
of the XY vector Blume-Emery-Griffiths model in three dimensions [7]. Here we once again
apply this technique to study a continuous spin model.

In a previous work [8] we have investigated, through Monte Carlo simulations [9], the phase
diagram of the anisotropic ferromagnetic Heisenberg model in a crystal field on a simple cubic
lattice, which reveals a rich topology due to the competition between crystalline and exchange
anisotropies. This phase diagram, depicted in Fig. 1 for a finite lattice of linear size L = 14,
shows two ordered phases, separated by a first-order transition line. The Ising-like ordered
phase has an easy axis ordering (z axis), while the XY-like phase has an easy plane ordering,
perpendicular to the z axis. Each ordered phase is separated from the disordered paramagnetic
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Figure 1. Phase diagram for the anisotropic Heisenberg model in a crystal field on a simple
cubic lattice (L=14). Lines are only guide to the eyes. The continuous lines and full circles
indicate second-order phase transitions, while the dashed line and open circles stand for first
order phase transitions. As mentioned in [8], the finite-size scaling behavior performed revealed
that the extrapolated temperatures were very close (less than 1% discrepant) to those obtained
by taking L=14, justifying, for our purposes, the use of such lattice size to obtain the phase
diagram. Error bars are of the size or smaller than symbol sizes.
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Figure 2. Probability distribution function for the field mixing extensive conjugate variable
Q = Q−sE (L=20). The distribution displayed refers to two different points along the first-order
line. Error bars are of the size or smaller than symbol sizes.

phase by a second-order transition line. All transition lines terminate at a bicritical point. It is
the location of this bicritical point that we want now to determine with better precision.

The model is defined by the hamiltonian

H = −J
∑

〈i,j〉

(�Si · �Sj) − A
∑

〈i,j〉

Sz
i Sz

j + D
N∑

i=1

(Sz
i )2, (1)

where �S stands for a classical three dimensional spin vector with unity modulus and 〈i, j〉 stands
for a sum over first-neighbor spins on an N spin simple cubic lattice. J is the ferromagnetic
(J = 1) exchange interaction parameter, A refers to the easy-axis exchange anisotropy (A > 0)
and D is related to the easy-plane crystalline interaction (we consider herein D > 0). In this
work we used A = 1.
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Figure 3. Finite size scaling analysis for two different points along the first-order line. The
line is the best fit to the data points for the indicated lattice sizes. Error bars are smaller than
symbol sizes.

2. RESULTS

Simulations were performed on a simple cubic lattice with L=16, 18, 20 and 22. In order to
reduce critical slowing down, we used a hybrid Monte Carlo scheme [10], performing four Wolff
[11] steps after one Metropolis [12] sweep. The Wolff algorithm was adapted to take into account
the anisotropies and dimensionality of the model based on the scheme proposed in Ref. [13].
In order to achieve good precision we had to perform very long runs (ranging from 280 to 690
million hybrid Monte Carlo steps).

Using field mixture [1, 14] and multiple histogram techniques [9, 15, 16, 17], we probed the
probability distribution of the conjugate extensive variable associated with the parameters D
and T in order to precisely locate the first-order transition line. This was achieved tuning the
values of the mixing parameter s and temperature T for a given value of the parameter D and
a specific lattice size L in order to obtain a symmetric distribution, as shown in Fig. 2 for two
values of the parameter D. Having the finite-size pseudo-transition temperature for each lattice
size, we performed the finite-size scaling analysis and determined the transition temperature. In
Fig. 3, the finite size scaling analysis is shown for two different values of the parameter D along
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Figure 4. Fourth-order cumulant of the order parameter for the three-dimensional anisotropic
Heisenberg model. Lines are only guide to the eyes and the error bars are smaller than the
symbol sizes.
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Figure 5. First-order transition line and its analytical extension on the D − T plane, obtained
with the procedure described in the text. The bicritical point is depicted in red. Lines are only
guide to the eyes and the error bars are smaller than the symbol sizes.

the first-order line. The conjugate extensive variable of interest here is Q = Q − sE, where

Q =
N∑

i=1

(Sz
i )2, (2)

and
E =

∑

〈i,j〉

(�Si · �Sj). (3)

We then computed the fourth-order cumulant of the order parameter (the z-component of the
magnetization) along the first-order line, defined as

U = 1 −

〈
m4

z

〉

3 〈m2
z〉

2
, (4)

where

mz =
N∑

i=1

Sz
i . (5)

At the bicritical point, the fourth-order cumulant should coincide for sufficiently large system
sizes. Thus, following the first-order transition line, we searched the cumulant crossing in order
to determine the bicritical point.

According to the cumulant crossing (Fig. 4), the bicritical point was located at D = 3.9555(4),
which corresponds to a bicritical temperature T = 1.6868(4). In Fig. 5, the first-order transition
line is depicted, along with its analytical extension, whose beginning is marked off by the
bicritical point.

3. CONCLUSIONS

In summary, employing field mixing and multiple histogram techniques, we have located the
bicritical point of the three-dimensional anisotropic Heisenberg model with very good precision
at D = 3.9555(4) and T = 1.6868(4). Further results concerning the bicritical behavior of this
model will be published elsewhere.
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