
Bicritical or tetracritical: the 3D anisotropic

Heisenberg antiferromagnet

Shan-Ho Tsai1,2, Siyan Hu1, and D. P. Landau1

1 Center for Simulational Physics, University of Georgia, Athens, GA 30602, USA
2 Georgia Advanced Computing Resource Center, Enterprise Information Technology Services,
University of Georgia, Athens, GA 30602, USA

E-mail: shtsai@uga.edu

Abstract.

The classical uniaxially anisotropic Heisenberg antiferromagnet on the simple cubic lattice,
in the presence of an external magnetic field, is believed to have a multicritical point; however,
there has been controversy whether it is a bicritical or a tetracritical point. We perform Monte
Carlo simulations of this model and analyze the components of the staggered magnetization,
the susceptibilities and the probability distribution of the magnetization to conclude that the
multicritical point is bicritical and it is in the three-dimensional Heisenberg universality class.

1. Introduction

The Hamiltonian of the uniaxially anisotropic Heisenberg antiferromagnetic model is given by:

H = J
∑

〈i,j〉

[Δ(Sx
i Sx

j + Sy
i Sy

j ) + Sz
i Sz

j ] − H
N∑

i=1

Sz
i (1)

where the three-component unit vectors Si = (Sx
i , Sy

i , Sz
i ) represent classical spins on sites i of

a simple cubic lattice, with linear size L, and J > 0 is the exchange coupling between nearest-
neighbor pairs of spins. The first summation is over all 〈i, j〉 pairs of neighboring sites and the
second summation is over all N = L3 lattice sites. The uniaxial exchange anisotropy Δ is set to
Δ = 0.8, which gives rise to an easy axis in the z direction. A magnetic field H is applied along
the z−axis. This model is also referred to as the XXZ antiferromagnet and it provides a good
description of many real magnetic systems, including NiCl26H2O [1, 2, 3], MnF2 [4, 5, 6], and
GdAlO3 [7, 8, 9], among others. A different anisotropic Heisenberg model, which has a crystal
field term, is studied in Ref.[10].

Early leading-order renormalization group theory [11], Monte Carlo simulations [12], high-
temperature series expansion [13], among other studies, concluded that the model described
above has an antiferromagnetic (AF) phase (see Fig. 1(a)) at low temperature T and low field
H, a spin-flop (SF) phase (see Fig. 1(b)) at low T and higher H, and a paramagnetic (P) phase
at high T and/or at high H. The AF to P phase transition line is in the Ising universality class,
while the SF to P phase transition line is in the XY universality class in this picture. The AF
and SF phases are separated by a first-order phase transition line and the three phases meet at
a bicritical point, which is in the three-dimensional (3D) Heisenberg universality class. Later, a
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renormalization group theory in higher-loop order [14] finds the presence of a tetracritical point
for this model with a new biconical phase (see Fig. 1(c)). A subsequent renormalization group
study in two-loop order proposes that a bicritical point in the 3D Heisenberg universality class
cannot be excluded [15]. Recent Monte Carlo simulations using Metropolis sampling, focusing
on simple cubic lattices with linear sizes L up to 32, and carrying out critical property analysis
using finite size scaling on the multicritical point [16, 17] corroborate a scenario with a bicritical
point in the 3D Heisenberg universality class. However, a subsequent numerical analysis of
anisotropic perturbations in three-dimensional O(N)-symmetric vector models suggests [18] that
for the model in question here, the stable fixed point has a biconical structure (see Fig. 1(c)),
and its critical exponents are very close to the ones in the 3D Heisenberg universality class [19].
Therefore, it is very hard to distinguish between a bicritical point in the Heisenberg universality
class and a tetracritical point (with a biconical phase) using Monte Carlo simulations and finite-
size scaling to determine critical exponents at the multicritical point. Figure 2 shows a schematic
view of the different phase diagrams that have been proposed for this model.
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Figure 1. Illustration of spin
configurations of the sublattices
in the antiferromagnetic, spin-flop,
and biconical phases.
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Figure 2. Schematic plot of the
phase diagram with the three sug-
gested scenarios for the region near
the multicritical point. AF, SF,
BC, and P label an antiferromag-
netic, a spin-flop, a biconical, and a
paramagnetic phase, respectively.

In this paper we use Monte Carlo simulations with a hybrid sampling method that includes
Metropolis and Wolff-cluster steps, and use larger lattices to determine the nature of the
multicritical point. Instead of obtaining critical exponents at the multicritical point, we examine
the order of the AF to SF phase transition below, but near, the multicritical point and investigate
whether a biconical phase is present. We also compare the probability distribution of the
uniform magnetization, which is a universal quantity, with the distribution of the 3D Heisenberg
universality class.

2. Simulation methods

We carried out Monte Carlo simulations [20] for the model described in Eq.(1) using a hybrid
method that consists of Metropolis single-spin-flip sampling [21], combined with the Wolff-
cluster algorithm [22] applied to the z-component of the spins, i.e. S z

i . A typical run consists of
107 ∼ 1.5 × 108 hybrid Monte Carlo steps (MCS), where each hybrid Monte Carlo step consists
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of 6 Wolff-cluster steps and 4 sweeps through the lattice using Metropolis sampling. The Wolff-
cluster algorithm implemented here satisfies detailed balance, but it is not ergodic, because it
only changes the z component of the spins ; however, the hybrid sampling method used here is
ergodic and it satisfies detailed balance. This hybrid sampling method allowed us to use larger
lattice sizes, with linear dimensions 10 ≤ L ≤ 60. Periodic boundary conditions are used to
minimize finite size effects. We also use histogram reweighting methods [23] to obtain results for
temperatures and external fields near the values at which simulations were performed. Several
independent runs were carried out to compute error bars in the quantities; whenever error bars
are not shown in the figures, they are of the size of or smaller than the symbol sizes.

In order to determine the phase transition line between the AF and SF phases and to detect
a possible biconical phase, we examine the components of the staggered magnetization along the
z direction and on the xy plane, i.e. M+

z and M+
xy, respectively. These quantities are defined by

M+
z = |Mz,A − Mz,B| (2)

M+
xy =

√
(Mx,A − Mx,B)2 + (My,A − My,B)2 (3)

where (Mx,i,My,i,Mz,i) are the x, y, and z components of the uniform magnetization on
sublattices i = A,B. In the AF phase, M+

z is non-zero and M+
xy is zero, whereas in the SF

phase M+
z vanishes but M+

xy does not. Therefore these two quantities can be used as order
parameters for the phase transitions between the AF and SF phases. A concurrent, non-zero
value of M+

z and M+
xy would reveal a biconical phase. The susceptibilities χ+

xy and χ+
z are

computed from the fluctuations of M+
xy and M+

z , respectively. To simplify notation, we set
J = 1 and the Boltzmann constant kB = 1.

3. Results

The phase diagram for the XXZ model described by the Hamiltonian in Eq. (1), as obtained
by Selke [17], is shown in Fig. 1 of Ref.[17]. The multicritical point where the AF, SF, and P
phases meet was determined to be [17] at kBT/J = 1.025 ± 0.0025 and H/J = 3.89 ± 0.01.

Below the multicritical point, if we fix the temperature T and vary the external field H from
the AF to the SF phase, we would see a single first-order phase transition point in the absence
of a biconical phase. If a biconical phase exists, then two second-order phase transition points,
separating the AF and BC phases and the BC and SF phases, would be seen.

At T = 0.95 the ensemble average of the order parameters M +
xy and M+

z per site as a function
of H, shown in Fig. 3, indicate that a single phase transition occurs around H = 3.8382 (shown
by the dashed line in Fig. 3). The peak positions of the susceptibilities χ+

xy and χ+
z (see Fig.

4) occur at the same field (marked by dashed line in Fig. 4), which corroborates that a single
phase transition between the AF and the SF phase occurs at this temperature. Hence, we see
no evidence of a biconical phase at T = 0.95.

Next, we consider a temperature closer to the multicritical point, namely T = 0.98. Fig. 5
shows the ensemble average of the order parameters M +

xy and M+
z per site as a function of H

at T = 0.98. Again, the curves for the larger lattice sizes show that a single phase transition
happens around H = 3.8614 (shown by the dashed line in Fig. 5). The presence of a single
phase transition is confirmed by the location of the peaks in χ+

xy and χ+
z , which occur at the

same field (shown by the dashed line in Fig. 6). We have also plotted the order parameters and
their susceptibilities at T = 1.01 (results not shown here), and we have seen no evidence of a
biconical phase.

The order of the AF to SF phase transition points at temperatures below the multicritical
point is determined with a finite-size scaling plot of the logarithm of the maximum of the
susceptibilities χ+

xy and χ+
z as a function of L. For a first-order phase transition, the maximum
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Figure 3. Components of the staggered
magnetization per site as a function of
H for T = 0.95. The dashed line marks
H = 3.8382.
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Figure 4. Magnetic susceptibilities χ+
xy

and χ+
z as a function of the external field

H for T = 0.95. The dashed line marks
H = 3.8382.
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Figure 5. Components of the staggered
magnetization per site as a function of
H for T = 0.98. The dashed line marks
H = 3.8614.
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Figure 6. Magnetic susceptibilities χ+
xy

and χ+
z as a function of external field H

for T = 0.98. The dashed line marks
H = 3.8614.

of the susceptibility of the order parameter scales as Ld, where d is the dimension of the lattice.
Linear least-squares fitting of the maximum of χ+

xy and χ+
z as a function of L in a log-log plot
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(see Figs. 7(a) and 7(b)) show that the slopes in these graphs are very close to 3, which is
the dimension of the simple cubic lattice used here. For T = 1.01, due to the proximity to the
multicritical point, the linear fitting gives a slope close to 3 when the smaller lattices (L = 10, 20)
are excluded from the fitting. These results indicate that the AF to SF phase transition points
at these temperatures below, but quite near, the multicritical point are of first order.
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Figure 7. Logarithm of the maximum of the susceptibilities (a) χ+
xy and (b) χ+

z as a function of
L for temperatures below the multicritical point. The linear fitting for T = 0.95, T = 0.98, and
T = 1.01 includes data points for L = 10 to 60, L = 20 to 60, and L = 30 to 60, respectively.

In order to determine the nature of the multicritical point, we consider the universal scaling

function P ∗(m/σ), where σ is the variance of the uniform magnetization m =
√

M2
x + M2

y + M2
z ,

which we rescale to m/σ. The probability distribution has the following form [25, 26]:

P (m) =
1

σ
P ∗(m/σ) (4)

where σ is calculated as σ2 =< m2 > − < m >2. Fig. 8 shows the comparison of our probability
distribution for L = 30 and L = 40 with the probability distribution for the 3D Heisenberg
model. We used histogram reweighting in T and H to obtain curves that best match the 3D
Heisenberg probability distribution. The distribution for the Heisenberg model was obtained for
L = 40, at the critical point [24]. These unit-variance, zero-average curves collapse very nicely;
hence, we have confidence in concluding that the meeting point of the AF, SF, and P phases
belongs to the 3D Heisenberg universality class.
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Figure 8. Scaling function
P ∗(m/σ) for L = 30 and L = 40 at
the multicritical point, and for the
3D Heisenberg model at its critical
point.
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4. Conclusions

Monte Carlo simulations with Wolff-cluster and Metropolis sampling methods are used to study
the uniaxially anisotropic Heisenberg antiferromagnet (XXZ model) in an external field H along
the z direction, on simple cubic lattices. By looking at fixed temperatures T = 0.95, T = 0.98,
and T = 1.01 below the multicritical point, we determined that for each T there is a single
first-order phase transition between the antiferromagnetic and the spin-flop phases. We have
seen no evidence of a biconical phase. Because the critical exponents at a tetracritical point are
very close to those at a bicritical point in the 3D Heisenberg universality class, it is very hard to
use critical exponent values to determine the nature of the multicritical point. Hence, we used
the probability distribution of the magnetization for this purpose. An excellent collapse of this
probability distribution with the universal distribution of the 3D Heisenberg model leads us to
conclude that the multicritical point in the XXZ model is indeed a bicritical point in the 3D
Heisenberg universality class.
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