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Abstract. The long-standing problem with a non-Abelian tensor with non-trivial consistent
couplings in four dimensions has been solved. The key technique is double-fold: (1) Adding
extra Chern-Simons terms for the field strength of non-Abelian tensor, and (2) employing a
compensator mechanism. We generalize this mechanism to supersymmetric system. Our system
has three multiplets: (i) The usual non-Abelian vector multiplet (VM) (Aµ

I , λI), (ii) A non-
Abelian tensor multiplet (TM) (Bµν

I , χI , ϕI), and (iii) A compensator vector multiplet (CVM)
(Cµ

I , ρI). The indices I, J, ··· are for the adjoint representation of a non-Abelian group G. All
of our fields are propagating with kinetic terms. The Cµ

I -field plays the role of a compensator
absorbed into the longitudinal component of Bµν

I . We give both the component lagrangian
and a corresponding superspace reformulation, reconfirming the total consistency of the system.

1. The Conventional Problem with Non-Abelian Tensors
First, the conventional problem with non-Abelian tensors will be discussed. A solution will be
presented. Also presented will be a supersymmetrized physical non-Abelian field with consistent
interactions [1], both in component language and superfield language.

The long-standing problem with a non-Abelian tensor is described as follows. Let I be
the adjoint index of a non-Abelian group G gauged by the a non-Abelian vector field Aµ

I ,
minimally coupled to the antisymmetric tensor Bµν

I with the coupling constant g. Consider
the conventional field strength3

G(0)
µνρ

I ≡ +3DbdµBνρce
I ≡ +3(∂bdµBνρce

I + gf IJKAbdµ
JBνρce

K) , (1.1)

where Dµ is the usual gauge-covariant derivative with the structure constant f IJK of the
group G. Consider an action I0 ≡

∫
d4xL0 with the lagrangian4

L0 ≡ −
1

12
(G(0)

µνρ
I)2 − 1

4
(Fµν

I)2 , (1.2)

with Fµν
I ≡ 2∂bdµAνce

I + gf IJKAµ
JAν

K . Obviously, the B -field equation is5

δL0
δBµνI

= +
1

2
DρG

(0)µνρI .= 0 . (1.3)

3 The formulation in this section is the so-called ‘tensor hierarchy’ [2, 3, 4, 5], but we re-formulate their general
expressions in terms of our objectives here.
4 We use the signature (−,+,+,+) for four dimensions (4D) as in [1].
5 The symbol

.
= stands for a field equation, to be distinguished from an algebraic identity. We also use the

symbol
?
= for an equality under question.
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The problem is that the divergence of this B -field equation does not vanish:

0
?
= Dν

(
δL0
δBµνI

)
= +

1

4
gf IJKFνρ

JG(0)µνρK 6= 0 , (1.4)

unless Fµν
I or G

(0)
µνρ

I vanishes trivially. This inconsistency arises already at the classical level.
This is also one of the reasons, why topological formulations with vanishing field strengths

Fµν
I .= 0, G

(0)
µνρ

I .= 0 such as in [6] are easier to formulate for non-Abelian tensors.
An additional problem is related to the so-called local tensorial gauge transformation of the

B -field:

δβBµν
I = +Dbdµβνce

I −Dbdνβµce
I , (1.5)

because the field strength Gµν
I is not invariant under δβ:

δβG
(0)
µνρ

I = +3gf IJKFbdµν
Jβρce

K 6= 0 . (1.6)

This further implies the non-invariance of the action: δβI0 6= 0. These two problems are
mutually related, because the non-vanishing of (1.4) is also re-casted into δβI0 6= 0.

2. Solution to the Problem
The solution to the problem above is to introduce a non-trivial Chern-Simons (CS) term into
the G -field strength:

Gµνρ
I ≡ +3(∂bdµBνρce

I + gf IJKAbdµ
JBνρce

K)− 3f IJKCbdµ
JFνρce

K

= +3DbdµBνρce
I − 3f IJKCbdµ

JFνρce
K ≡ +G(0)

µνρ
I − 3f IJKCbdµ

JFνρce
K , (2.1)

where Cµ
I is a ‘compensator’ vector field, also carrying the adjoint index. The field strength

for C is defined by

Hµν
I ≡ +DbdµCνce

I −DbdνCµce
I + gBµν

I . (2.2)

Now these field strengths G and H are invariant under the δβ -transformation

δβBµν
I = +Dbdµβνce

I −Dbdνβµce
I (2.3a)

δβCµ
I = − gβµI , (2.3b)

which is the ‘proper’ gauge transformation for Bµν
I , and δγ -transformation

δγBµν
I = − f IJKFµνJγK , (2.4a)

δγCµ
I = Dµγ

I . (2.4b)

which is the ‘proper’ gauge transformation for Cµ
I . As (2.3b) shows, Cµ

I is a compensator
field for the δβ -transformation.

The role played by the C ∧ F -term in (2.1) is to cancel the unwanted term in (1.6). The
C -field itself should have its own ‘gauge’ transformation as the covariant gradient (2.4b). The
contribution of δγ(2DbdµCνce

I) in (2.2) is cancelled by the contribution of δγ(gBµν
I). In other

words, we have the total invariances

δβ(Gµνρ
I , Hµν

I) = (0, 0) , δγ(Gµνρ
I , Hµν

I) = (0, 0) . (2.5)
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Accordingly, we also have the consistency problem (1.4) solved, by considering the lagrangian

L1 ≡ − 1
12 (Gµνρ

I)2 − 1
4 (Hµν

I)2 − 1
4 (Fµν

I)2 . (2.6)

The total action is also invariant δβI1 = δγI1 = 0. The field equations for B and C -fields are

δL1
δBµνI

= +
1
2 DρG

µνρ I − 1
2 gH

µν I .= 0 , (2.7a)

δL1
δCµI

= −DνH
µν I +

1

2
f IJKFρσ

JGµρσK
.
= 0 , (2.7b)

The divergence of the B -field equation vanishes now:

0
?
= Dν

(
δL1
δBµνI

)
= +

1

2
g

(
δL1
δCµI

)
.
= 0 , (2.8)

where the last equality holds because of the C -field equation. In other words, the unwanted
FG -term in (1.4) is now cancelled by the contribution of the C -field equation.

Relevantly, the divergence of (2.7b) also vanishes, as it should without any inconsistency:

0
?
= Dµ

(
δL1
δCµI

)
= +f IJKFµν

J

(
δL1

δBµνK

)
.
= 0 . (2.9)

We emphasize repeatedly that these invariances have never been accomplished without the
peculiar CS terms both in (2.1) and (2.2) [2, 3, 4, 5].

3. Component Formulation of N=1 TM
The supersymmetrization of the purely bosonic system (2.6) has been accomplished in our recent
paper [1]. We need three multiplets: (i) A tensor multiplet (TM) (Bµν

I , χI , ϕI), (ii) A Yang-
Mills vector multiplet (YMVM) (Aµ

I , λI), and (iii) A compensating vector multiplet (CVM)
(Cµ

I , ρI). Our total action I ≡
∫
d4x g2L has the lagrangian [1]

L = − 1

12
(Gµνρ

I)2 +
1

2
(χID/χI)− 1

2
(Dµϕ

I)2 − 1

2
g2(ϕI)2 − g(χIρI)

− 1

4
(Hµν

I)2 +
1

2
(ρID/ρI)− 1

4
(Fµν

I)2 +
1

2
(λID/λI)

− 1

2
gf IJK(λIχJ)ϕK +

1

2
f IJK(λ

I
γµρJ)Dµϕ

K +
1

12
f IJK(λ

I
γµνρρJ)Gµνρ

K

+
1

4
f IJK(ρIγµνχJ)Fµν

K − 1

4
f IJK(λ

I
γµνχJ)Hµν

K − 1

2
f IJKFµν

IHµν JϕK , (3.1)

up to quartic-order terms O(φ4), and the coupling constant g has the dimension of mass.
The scalar ϕI has its mass g, while there is a mixture between χI and ρI with the same

mass g. As has been mentioned after (2.4), Cµ
I is a compensator field [7], absorbed into the

longitudinal component of Bµν
I . The kinetic term of the C -field becomes the mass term of

Bµν
I . Accordingly, the degrees of freedom (DOF) for the massive TM fields are Bµν

I (3), χ with
ρI (4) and ϕI(1).
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Our action I is invariant under global N = 1 supersymmetry [1]

δQBµν
I = + (εγµνχ

I)− 2f IJKCbdµ|
J(δQA|νce

K) , (3.2a)

δQχ
I = +

1

6
(γµνρε)Gµνρ

I − (γµε)Dµϕ
I

+
1

2
f IJK

[
+ ε(λJρK)− (γ5γ

µε)(λJγ5γµρ
K)− (γ5ε)(λ

Jγ5ρ
K)
]
, (3.2b)

δQϕ
I = + (εχI) , (3.2c)

δQCµ
I = + (εγµρ

I) + f IJK(εγµλ
J)ϕK , (3.2d)

δQρ
I = +

1

2
(γµνε)Hµν

I − gεϕI − 1

2
f IJK(γµνε)Fµν

JϕK

+
1

4
f IJK

[
+ ε(λJχK)− (γµε)(λJγµχ

K) +
1

2
(γµνε)(λJγµνχ

K)

− (γ5γ
µε)(λJγ5γµχ

K)− (γ5ε)(λ
Jγ5χ

K)
]
, (3.2e)

δQAµ
I = + (εγµλ

I) , (3.2f)

δQλ
I = +

1

2
(γµνε)Fµν

I +
1

2
f IJK(γ5ε)(ρ

Jγ5χ
K) , (3.2g)

up to O(φ3) -terms.
Our tensorial gauge transformation δβ, and δγ -transformation are exactly the same as

(2.3) and (2.4), while all the fermionic fields transform only under the usual non-Abelian gauge
transformation δα, as the B and C -fields do, so that there is no problem with the δβI = 0 and
δγI = 0 of the field strengths as in (2.1) and (2.2), via (2.5).

The δQ -transformations of the field strengths reflect their CS terms:

δQGµνρ
I = + 3(εγbdµνDρceχ

I) + 3f IJK(δQAbdµ
J)Hνρce

K − 3f IJK(δQCbdµ
J)Fνρce

K , (3.3a)

δQHµν
I = − 2(εγbdµDνceρ

I) + g(εγµνχ
I) + 2f IJKDbdµ|

[
(δQA|νce

J)ϕK
]
, (3.3b)

δQFµν
I = − 2(εγbdµDνceλ

I) . (3.3c)

Since we have not added the D -auxiliary field, our YMVM and CVM have on-shell DOF
2+2, while off-shell DOF 3+4. However, our TM is in the off-shell formulation with the total
off-shell DOF 4 + 4, because the off-shell DOF of each field are [(4 − 1) · (4 − 2)]/2 = 3 for
Bµν , 4 for χ and 1 for ϕ.

The field equations for all of our fields are6 [1]

+D/λI − 1

2
gf IJKχJϕK +

1

2
f IJK(γµρJ)Dµϕ

K

− 1

4
f IJK(γµνχJ)Hµν

K +
1

12
f IJK(γµνρρJ)Gµνρ

K .= 0 , (3.4a)

+D/χI − gρI +
1

2
gf IJKλHϕK − 1

4
f IJK(γµνλJ)Hµν

K +
1

4
f IJK(γµνρJ)Fµν

K .= 0 , (3.4b)

+D/ρI − gχI +
1

2
f IJK(γµλJ)Dµϕ

K

6 These equations are fixed up to O(φ3) -terms, due to the quartic fermion terms in the lagrangian.
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− 1

12
f IJK(γµνρλJ)Gµνρ

K +
1

4
f IJK(γµνχJ)Fµν

K .= 0 , (3.4c)

+DνFµ
ν I + gf IJKϕJDµϕ

K +
1

2
gf IJK(λJγµλ

K) + f IJKHµν
JDνϕK

− 1

2
f IJKGµρσ

JHρσK +
1

2
f IJK(χJDµρ

K) +
1

2
f IJK(ρJDµχ

K)
.
= 0 , (3.4d)

+DρG
µνρ I − gHµν I − 1

2
f IJKDρ(λ

JγµνρρK)

+ gf IJKFµν JϕK − 1

2
gf IJK(λJγµνχK)

.
= 0 , (3.4e)

+D2
µϕ

I − gf IJK(λJχK)− g2ϕI − 1

2
f IJKFµν

JHµν K .= 0 , (3.4f)

+DνH
µν I − 1

2
f IJKFρσ

JGµρσK − 1

2
f IJK(χJDµλK)− 1

2
f IJK(λJDµχK)

+
1

2
gf IJK(λJγµρK)− f IJKFµν JDνϕ

K .= 0 . (3.4g)

In deriving each of these equations, we have also used other field equations.

4. Superspace Reformulation of N=1 TM
We can re-formulate our theory in superspace, as an independent consistency-reconfirmation.

Our superspace BIds for the superfield strengths FAB
I , GABC

I and HAB
I are7

+
1
6 ∇bdAGBCD)

I − 1
4 TbdAB|

EGE|CD) −
1
4 f

IJKFbdAB
JHCD)

K ≡ 0 , (4.1a)

+
1
2 ∇bdAHBC)

I − 1
2 TbdAB|

DHD|C)
I − g GABCI ≡ 0 , (4.1b)

+
1
2 ∇bdAFBC)

I − 1
2 TbdAB|

DFD|C)
I ≡ 0 . (4.1b)

Our relevant superspace constraints at the mass dimensions 0 ≤ d ≤ 1 are

Tαβ
c = + 2(γc)αβ , Gαβc

I = +2(γc)αβ ϕ
I , (4.2a)

Gαbc
I = − (γbcχ

I)α , Hαb
I = −(γbρ

I)α − f IJK(γbλ
J)α ϕ

K , (4.2b)

Fαb
I = − (γbλ

I)α , ∇αϕI = −χαI , (4.2c)

∇αχβI = − 1
6 (γcde)αβGcde

I − (γc)αβ∇cϕI

− 1

2
f IJK

[
+ Cαβ(λJρK)− (γ5γ

c)αβ(λJγ5γcρ
K)− (γ5)αβ(λJγ5ρ

K)
]
, (4.2d)

∇αρβI = +
1

2
(γcd)αβHcd

I + g Cαβ ϕ
I − 1

2
f IJK(γcd)αβFcd

JϕK

− 1

4
f IJK

[
+ Cαβ(λJχK) + (γc)αβ (λJγcχ

K)− 1

2
(γcd)αβ(λJγcdχ

K)

− (γ5γ
c)αβ(λJγ5γcχ

K)− (γ5)αβ(λJγ5χ
K) , (4.2e)

∇αλβI = +
1

2
(γcd)αβFcd

I − 1

2
(γ5)αβ f

IJK(ρJγ5χ
K) . (4.2f)

7 In this superspace section, we use the indices A = (a,α), B = (b,β), ··· for superspace coordinates, where
a, b, ··· = 0, 1, 2, 3 (or α, β, ··· = 1, 2, 3, 4) are for bosonic (or fermionic) coordinates. In superspace, we use the
(anti)symmetrization convention, e.g., XbdAB) ≡ XAB − (−1)ABXBA, different from our component formulation.
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All other components, such as Gαβγ
I or Tαβ

γ etc. at d ≤ 1 are zero.
Although most of technical details associated with superspace formulation are skipped here,

we presented a rather independent confirmation for the total consistency of our N = 1 non-
Abelian tensor multiplet in superspace.

5. Concluding Remarks
In this talk, we have explained how to formulate the N = 1 supersymmetrization in 4D of a
physical non-Abelian tensor with consistent couplings [1]. This is the supersymmetrization of
the special case [4] of the minimal tensor hierarchy [5], which, in turn, is a special case of more
general hierarchy in [2][3]. Both the component and superspace formulations of our system
are given, as the cross-verification of our system. Our CVM (Cµ

I , ρI) plays the role of a
compensator multiplet, absorbed into the TM (Bµν

I , χI , ϕI), making the latter massive.
There exists certain problem for the quantization of Stueckelberg theory [7] for non-Abelian

gauge groups [9]. This is because the longitudinal components of the gauge field do not decouple
from the physical Hilbert space, so that the renormalizability and unitarity of the system are
spoiled [9]. We take rather an optimistic standpoint about this potential problem for the
following reasons. First, we mention that our theory is not renormalizable due to Pauli couplings.
This feature is not necessarily a fatal drawback for our theory, because certain theories exist in
4D, such as non-linear sigma models that are not renormalizable, but are not rejected from the
outset. Second, N = 1 supersymmetry may well improve quantum behavior of our theory,
compared with non-supersymmetric systems. There is good chance that supersymmetries solve
the quantum problem of non-Abelian Stueckelberg theories.

The importance of our result [1] is double-fold: (i) A new supersymmetric physical system
with Stueckelberg mechanism that solves the problem with non-Abelian tensor is presented. (ii)
The problem with extra vector fields in the non-singlet representation of a non-Abelian gauge
group is now solved. We should also consider the possibility that N = 1 supersymmetry may
well provide better quantum behavior compared with non-supersymmetric cases.
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