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Abstract. We investigate density perturbations sourced by a curvaton with a generic energy
potential. The key feature of a curvaton potential which deviates from a quadratic is that
the curvaton experiences a non-uniform onset of its oscillation. This sources additional
contributions to the resulting density perturbations, and we especially find that curvaton
potentials that are flatter compared to a quadratic lead to enhancement of the linear and second-
order density perturbations, while steepened potentials can generate strongly scale-dependent
non-Gaussianity. As such examples, we study pseudo-Nambu-Goldstone curvatons and self-
interacting curvatons. Our analyses are analytic, and thus provide a systematic framework for
studying curvatons in general. The discussion in this paper are based on [1, 2].

1. Introduction
The curvaton mechanism [3, 4, 5] is an attractive mechanism for creating the primordial density
perturbations of our universe. In this scenario, the curvaton field possessing large-scale field
fluctuations generates the density perturbations while it oscillates about its potential minimum
and comes close to dominating the universe. The mechanism also has the merit that when
embedded in inflationary cosmology, it frees the inflaton from being responsible for generating
the perturbations and therefore drastically relaxes constraints on inflationary model building.

In this paper, we explore density perturbations sourced by a curvaton rolling along an
arbitrary energy potential. When the potential deviates from a quadratic one, the curvaton
field with large-scale field fluctuations starts its oscillation at different times at different patches
of the universe. Such behaviour contributes to the curvaton energy density perturbations in
addition to that sourced directly from the original field fluctuations. We find that such non-
trivial conversion processes of the field fluctuations into the density perturbations can lead to
strong enhancement/suppression of the density perturbations of the universe, as well as for their
non-Gaussianities.

It is worthwhile to investigate curvaton potentials which deviate from simple quadratic ones,
both from observational and theoretical reasons: Considering a curvaton whose field fluctuations
were generated during the inflationary era, in order for the curvaton to produce the red-tilted
density perturbation spectrum as suggested by latest CMB observations [6] without relying
on specific inflation mechanisms (such as large-field models), the curvaton needs to be located
along a potential with negative curvature during inflation. This obviously suggests the curvaton
potential to take non-trivial forms. Furthermore, explicit curvaton models constructed in the
framework of microscopic physics can naturally possess intricate energy potentials.
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We first derive analytic expressions for the density perturbations sourced by curvatons
with generic energy potentials. Then we look into pseudo-Nambu-Goldstone curvatons and
self-interacting curvatons, which provide, respectively, typical examples of curvaton potentials
that flatten/steepen compared to a quadratic one. We find that flat potentials can lead to
enhancement of the linear and second-order density perturbations, while steepened potentials
can generate strongly scale-dependent non-Gaussianity.

The results presented in the following are based on the works [1, 2], where one can find detailed
discussions. (For related discussions, see also [7, 8, 9, 10, 11, 12] and references therein.)

2. Density Perturbations from Curvatons
A light curvaton acquires nearly scale-invariant field fluctuations during inflation, that are
converted into the cosmological density perturbations as the curvaton oscillates and decays in
the post-inflationary era. Let us first lay out analytic expressions for the density perturbations
generated by a curvaton σ with a generic energy potential V (σ). The potential is assumed to
have no explicit dependence on time, and also that it is well approximated by a quadratic one
around its minimum (which we set as σ = 0) so that the curvaton oscillations are sinusoidal.1

Hence the curvaton energy density is considered to redshift similarly to nonrelativistic matter
after the onset of the oscillations until when the curvaton decays into radiation, whereas we
suppose the inflaton to behave as matter from the end of inflation until reheating when the
inflaton decays into radiation. The energy density of the curvaton before the beginning of its
oscillation is assumed to be negligibly tiny compared to the total energy of the universe, having
little effect on the expansion history. Furthermore, we neglect density perturbations sourced
from the inflaton.

2.1. Linear and Second Order Perturbations
Supposing the curvaton field fluctuations to be nearly Gaussian and to satisfy Pδσ(k) =
(H|k=aH/2π)2 at the time when the scale k of interest exits the horizon, then using the δN -
formalism, the power spectrum of the linear order density perturbations can be expressed in
terms of the curvaton potential as
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with
∂N
∂σ∗

=
r̂

4 + 3r̂
(1−X(σosc))

−1

{
V ′(σosc)

V (σosc)
− 3X(σosc)

σosc

}
V ′(σosc)

V ′(σ∗)
. (2)

Here, the subscript ∗ denotes values when the CMB scale k∗ exits the horizon, “osc” represents
values at the onset of the curvaton oscillation, and a prime denotes a derivative with respect
to σ. An overdot will be used below to denote a time derivative. r̂ is the energy density ratio
between the curvaton and radiation (which originates from the inflaton) upon curvaton decay
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(3)

where the first and second terms in the Max. parentheses correspond to the curvaton being
subdominant and dominant at its decay, respectively, while the Min. parentheses are due to

1 The formulae can be generalized to cases with non-sinusoidal oscillations as well, see Appendix B of [1].
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whether the onset of oscillation is after or before reheating. Γϕ and Γσ are constants denoting
respectively the decay rates of the inflaton and the curvaton. We adopt the sudden decay
approximation where the scalar fields suddenly decay into radiation when H = Γ.

The functionX in (2) denotes effects due to the non-uniform onset of the curvaton oscillations
(which are absent for a purely quadratic curvaton potential), defined as follows:

X(σosc) ≡
1

2(c− 3)

(
σoscV

′′(σosc)

V ′(σosc)
− 1

)
. (4)

Here, c is a constant whose value is set by whether reheating (= inflaton decay, at treh) is
earlier/later than the onset of the curvaton oscillation:

c =

{
5 (treh < tosc)
9/2 (treh > tosc).

(5)

We can define the onset of the oscillation as when the time scale of the curvaton rolling becomes
comparable to the Hubble time, i.e. |σ̇/Hσ| = 1. This gives the Hubble parameter at the time
as

H2
osc =

V ′(σosc)

cσosc
, (6)

where c is given in (5). Furthermore, the curvaton field value at the onset of the oscillations σosc
is obtained as a function of σ∗ by solving∫ σosc

σ∗

dσ

V ′ = − N∗
3H2
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− 1
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osc

, (7)

where N∗ is the number of e-folds during inflation between the horizon exit of the CMB scale
and the end of inflation, and Hinf is the inflationary Hubble scale (we are assuming a nearly
constant Hubble parameter during inflation, thus Hinf ≃ H∗).

Thus by combining the above expressions, one can compute the power spectrum produced
by a curvaton with a generic potential V (σ), given the parameters σ∗, Γϕ, Γσ, Hinf , and N∗.

As for the local-type bispectrum produced by the curvaton, we parametrize its overall
amplitude by the non-linearity parameter fNL on the equilateral configuration, which can be
shown to take the form
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(8)

2.2. Scale-Dependence
The scale-dependence of the linear and second order perturbations are calculated by using the
slow-roll approximation for the curvaton 3H∗σ̇∗ ≃ −V ′(σ∗). The spectral index of the linear
order perturbations is

ns − 1 ≡ d

d ln k
lnPζ ≃ 2
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and its running is
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In order to parametrize the scale-dependence of the non-Gaussianity, we define the spectral
index of fNL as follows:

nfNL
≡ d ln |fNL|
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≃ 1
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We remark that a totally scale-invariant fNL corresponds to nfNL
= 0 (instead of 1).

3. Pseudo-Nambu-Goldstone Curvatons
As a simple example, let us examine the case where the curvaton is a pseudo-Nambu-Goldstone
(NG) boson of a broken U(1) symmetry, possessing a potential of the form

V (σ) = Λ4

[
1− cos

(
σ

f

)]
. (12)

Here, f and Λ are mass scales. Without loss of generality, we set the field value of the curvaton
at horizon exit during inflation to lie within the range 0 < σ∗ < πf , and consider its oscillation
about the origin σ = 0. (For an investigation of NG curvatons located close to their potential
minimum, see also [13].) Supposing that the coupling of the NG curvaton with its decay product
is suppressed by the scale of symmetry breaking f , we set the curvaton decay rate as

Γσ =
1

16π

m3

f2
=

1

16π

Λ6

f5
, (13)

where m is the mass at the minimum, i.e. m2 = V ′′(0).
We show the resulting density perturbations from NG curvatons in Figures 1 and 2, where the

analytic estimations given by the expressions in the previous section are plotted as solid lines.
We also plotted numerically computed results shown as dots. The potential parameters and the
inflation/reheating scales are chosen such that the curvaton with σ∗ =

3
4πf generates a density

perturbation spectrum whose amplitude takes the COBE normalization value Pζ ≈ 2.4× 10−9,
with the spectral index lying at the central value of the WMAP7 [6] bound (for a power-law
spectrum with no tensor modes) ns ≈ 0.96, assuming constant H during inflation. In the
figures, we have fixed all the parameters except for the initial field value σ∗, and plotted the
perturbations as functions of σ∗.

In the region σ∗ ≪ πf , the curvaton potential is well approximated by a quadratic, thus the
density perturbations behave similarly as from quadratic curvatons. For the chosen parameters,
the curvaton energy fraction at decay r̂ is smaller than unity for σ∗/πf ≲ 0.5. Therefore, as
r̂ increases with σ∗, the power spectrum also increases while fNL decreases, which are familiar
behaviors of quadratic curvatons. On the other hand, as one approaches σ∗/πf → 1, it can be
seen that the linear order perturbation as well as the non-Gaussianity increase. This is due to the
non-uniform onset of the curvaton oscillation, and it can further be shown that the linear order
perturbations blow up in the hilltop limit, accompanied by a mild increase of the non-linearity
parameter fNL. This is actually a generic feature of hilltop curvatons.

NG curvatons at the hilltop can work with a wide range of inflation/reheating scales, and
a detailed study of the parameter space reveals that such hilltop NG curvatons, even though
it well dominates the universe before it decays, predict the non-Gaussianity to lie in the range
10 ≲ fNL ≲ 30 [1]. (This is in strong contrast to quadratic curvatons, which produce large fNL

only when r̂ < 1.)
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Figure 1. Power spectrum. Figure 2. Non-Gaussianity.

4. Self-Interacting Curvatons
A simple example of curvaton potentials that steepen more rapidly than a quadratic is given by
curvatons with self-interactions of the form

V (σ) = Λ4

[(
σ

f

)2

+

(
σ

f

)m
]
, (14)

where Λ and f are positive constants with mass dimension, and m is an even integer with m > 2.
f denotes where the higher-order term becomes important, while Λ sets the overall scale of the
curvaton potential. Such self-interacting curvatons do not produce a red-tilted perturbation
spectrum unless relying on the time-variation of H during inflation, however, they have an
interesting feature such that the resulting fNL can be strongly scale-dependent, even when the
linear order perturbations are nearly scale-invariant [2].

We plot the density perturbations produced from self-interacting curvatons with m = 8 in
Figures 3 and 4. Here the parameters are chosen such that the power spectrum obtains the
COBE normalization value at around σ∗/f ≈ 0.6 (where the power spectrum obtains a peak).
As in the previous section, we have fixed all parameters except for σ∗, and shown how the
perturbations depend on σ∗. The blue solid lines denote the analytic calculations and the blue
dots the numerically computed results. In the nfNL

- fNL plane of Figure 4, we have also shown
as black dashed lines the detection limit of the Planck satellite [14], which can probe the running
of the local-type fNL if its running is large enough to satisfy |nfNL

fNL| ≳ 5. (See [15] for detailed
analyses on the expected constraints on running non-Gaussianity.)

The σ∗ ≪ f region is well-approximated by quadratic curvatons, and since r̂ is smaller than
unity throughout the plotted region, the power spectrum increases with σ∗ in the small field
regime due to the increase of r̂. However for larger field values, the power spectrum starts to
decrease. This is attributed to the steep self-interacting potential forcing the curvaton to roll
down to small field values by the onset of the curvaton oscillation. This greatly diminishes the
initial differences in the curvaton field values during inflation σ∗, thus suppresses the resulting
linear order density perturbations. As a consequence, the power spectrum obtains a peak at
σ∗/f ≈ 0.6, and there the non-linearity parameter fNL crosses zero and its running nfNL

blows
up. Therefore in the vicinity of σ∗/f ≈ 0.6, a large and strongly scale-dependent fNL can be
produced, whose running is in the detectable range by upcoming CMB observations.

5. Conclusions
We have analytically explored density perturbations from a curvaton with a generic potential,
and shown that non-quadratic potentials have rich phenomenology. Through studying pseudo-
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Figure 3. Power spectrum.

Figure 4. nfNL
- fNL plane, showing the

region 0.45 ≲ σ∗/f ≲ 0.65.

Nambu-Goldstone curvatons and self-interacting curvatons, we have seen that potentials that
flatten compared to a quadratic can enhance the linear and second order density perturbations,
while steepened potentials are capable of producing running non-Gaussianity. The analytic
formulae presented in this paper enable us to go beyond individual case studies and give a
systematic treatment of the curvaton scenario in general. This will be helpful for probing the
physics of curvatons when combined with upcoming data.
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