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Abstract. We have reviewed aspects of certain time-dependent deformations of AdS/CFT,
containing cosmological singularities and their gauge theory duals. Towards understanding these
solutions better, we have explored similar singular deformations of de Sitter space and argued
that these solutions are constrained, possibly corresponding to specific initial conditions.

1. Cosmological singularities and AdS/CFT

General relativity breaks down at cosmological singularities, with curvatures and tidal forces
typically diverging: notions of spacetime, thus, break down. There is a rich history of string
theory explorations of such singularities [1, 2]. We have focused on describing certain time-
dependent deformations of AdS/CFT [3, 4, 5, 6], where the bulk gravity theory develops a
cosmological singularity, and breaks down while the holographic dual field theory, a sensible
Hamiltonian quantum system typically subjected to a time-dependent gauge coupling, can
potentially be addressed in the vicinity of the singularity. The bulk string theory on AdS5 x S°
(in Poincare slicing) with constant dilaton (scalar) is deformed to:

1
ds® = —5 (Guvda’da” + dz*) + d0E

with g, ® functions of 2/ alone (® = ®(t) or ®(z") then gives time-dependence). This is a
solution if

_ 1 _
R, = 5(%(1)8,,(1), and O =0,

where [J = ﬁau(\/—_ggwa,,): these include, e.g., AdS-Kasner, FRW, BKL (based on the
Bianchi classification), etc. In many cases, it is possible to find new coordinates such that the
boundary metric ds? = lim, o z2ds§ is flat at least as an expansion about z = 0. This suggests
that the dual is the N'=4 super Yang-Mills theory with the gauge coupling 932, M= e®, deformed
to have external time-dependence. It is useful to focus on sources approaching e® — 0 at some
finite point in time: For instance, a coupling of the form g%,M — tP, p > 0, gives rise to
Ry ~ %@2 ~ t%, i.e., a bulk singularity with curvatures and tidal forces diverging near ¢t = 0.
Analyzing the gauge theory is possible in some cases. While at first sight, one might imagine
that the dual in such cases to be weakly coupled, this is not the case and interactions are

important in general [6]. For instance, the gauge kinetic terms gg—l(t)TTF 2 can be transformed
Y M
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to canonical ones for redefined gauge fields (as in standard perturbation theory), but this gives
rise to new (tachyonic, divergent) mass-terms stemming from the time derivatives of the coupling,
which ensure that the field variables get driven to large values as t — 0. With gauge kinetic terms

ﬁTrF 2 it turns out that the gauge theory Schrédinger wavefunctional near singularity
Y M

(t — 0) has a “wildly oscillating” phase for p > 1. Furthermore, the energy expectation value

generically diverges as (H) ~ ——2— (V). This suggests that if the coupling vanishes strictly,

2
gyju(t)
g%, M= e® — 0, the gauge theory response is singular. Deforming the gauge coupling so that

g%,M = ¢? is small but non-zero near t = 0 leads to finite, but large phase oscillation and

energy production: & ~ L i now finite, so the bulk is also non-singular (but stringy). The
eventual gauge theory endpoint depends on the details of energy production, but one might
expect thermalization on long time scales if the sources turn off.

With the gauge coupling 912/ M= e®@") being a function of lightcone time x", the physics is
quite different [3, 4]: In this case, g, = ef (ﬁ)n,w in the bulk, which is engineered to acquire
a null singularity at, say, 27 = 0 (with e®* ~ (27)P). Redefining A4, to absorb the coupling
gives canonical kinetic terms, and here, the potentially problematic mass-terms, in fact, vanish
due to the lightlike coupling. With these new gauge theory variables, the interaction terms
become unimportant as e® — 0. The near singularity lightcone Schrédinger wavefunctional
then appears regular, suggesting weakly coupled Yang-Mills theory. These variables appear to
be dual to stringy objects in the bulk (see also related work on worldsheet string descriptions
of certain null Kasner-like singularities [7]). We have noted the potential questions about
renormalization effects, however, e.g., introducing a “short-time” cutoff near singularity, and
studying contributions to the gauge theory effective action from sufficiently high frequency
modes (relative to ®).

An interesting point in this discussion has to do with the initial conditions for the time
evolution and eventual cosmological singularity. While in many cases, the sources can be
seen to turn off in the far past, thus, suggesting the initial state is the vacuum (for the
N=4 SYM theory), this is subtle. The fact that there is a bulk curvature singularity in the
deep interior (2 — oo) [5] and the observation that the deformations are constrained (e.g.,
R, = %8M<I>6V<I>, Ob = 0), suggest that, in fact, the initial conditions are constrained or fine-
tuned. Exploring this further turns out to be more fruitful in a related context, that of similar
deformations in de Sitter space.

2. de Sitter boundary deformations and dS/CFT

future infinity

time

future timelike
infinity for dS

Figure 1. de Sitter space dSg+1 in the
planar coordinates foliation has the metric
ds?> = % [~dr?® + 6;;da’da’]: This covers
half the space (dST), and 7 — +oo with
x® fixed corresponds to past/future timelike

future horizon for dS "upper patch" ast

"lower patch" dS— past horizon for ast
past timelike , infinity, while light rays 2° ~ 7 give the

infinity for dS horizon.

In the following, we have studied certain deformations of de Sitter space, containing
cosmological (Big-Bang or Crunch) singularities. Consider de Sitter space dSg; in the planar
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coordinates foliation (Figure 1), which is a solution to Ry;n = dgyn (with positive cosmological
constant), 7 being conformal time. We have introduced possible deformations of the d-dim
Euclidean boundary:

1 S
ds? = = [—dr* + §ijdz'da’] (1)

where the spatial metric g;; is a function solely of the spatial coordinates z' (i.e., not involving
time 7). We have seen that these are in a sense analytic continuations of the AdS-cosmologies
described above, although various physmal features are quite different qualitatively. These

metrics have R,, = 7%, R;; = RZ] + 2g”, and are, thus, solutions to Einstein’s equations

Ryn = dgyn (with no additional matter) if Rw = 0, i.e., the d-dim Euclidean metric is
Ricci-flat. In general, we have considered regular g;;. We have then seen that the generic
spatial metric g;; (even if regular) gives rise to singularities at || — oo due to diverging
RABCDR s pep ~ T4Rijab}?€ijab + ... (|]7| — oo is the analogue of z — oo in the AdS interior).
Now, consider dSy;1-deformations sourced by a background scalar field ¢. If the scalar has
purely spatial dependence ¢(z*), this is a solution if the d-dim part is an Einstein scalar system:

Rij = mam, and O =0, (2)
with 0 = - 6 (31/§0;). This scalar is non-dynamical and could represent non-trivial initial or

final condltlons sourcing the deformation of the spacetime. Using Eq. (2), these solutions have
the invariants:

2 3 2 4, 9
R=d(d+1)+ %(&b)?, and RapRAB = d*(d +1) + %(8@2 v TZ ((a¢)2) ,
where (9¢)? = § 0;¢0;¢. Thus, these invariants diverge at early/late times |7| — oo, sourced

by the scalar (even if the scalar energy density itself is finite).

We have noticed now that purely gravitational dS4-deformations do not exist: Rij = 0 has
only trivial solutions, pure 3-dim gravity being trivial. Non-trivial dS4-deformations require a
non-trivial source, e.g., the scalar field ¢(x?) above!: e.g., consider the dSy-deformation:

1 1
ds® = ﬁ[—d72—|—dr2+(T+C)dg02+2(r+C)d22], and e® = mok (3)

with R = 12 + 570, Ry RMY = 36 + 2755 + ey, and Ryypo R4 has similar structure.
Then for finite r, these invariants diverge as |7| — oo, signalling a singularity at past/future
timelike infinity. Light ray trajectories include geodesics of the form 7 = r, reaching the past
horizon as |7| — oo, and here, these invariants are finite. If higher order invariants are also
finite, this would give a spacelike singularity at |7| — oc.

It is interesting to compare these solutions with conventional investigations of cosmological
perturbations about de Sitter space, e.g., [8]. In an initial value formulation, the metric family
ds?> = —N2dt?> + hijd:cid:cj , with N(t) the lapse function and h;;, the spatial metric, has the
action:

S = / d*zvVhN {KUK” ~ K2+ R® —2A + %N’%Q — %hijaiqbajqi)], (4)

! For dSs-deformations (and higher dimensions), there are non-trivial solutions to Rij =0, e.g., 4-dim Ricci-flat
spaces, which include ALE spaces (non-compact C?/Zx singularities and their complete resolutions which are
smooth) and (compact) K3-surfaces. The dSs-deformation above has been found starting with the spatial metric
do? = dr? + (f(r))?de® + h(r)dz?, ¢ = ¢(r). C # 0 ensures regularity at r = 0; also ¢ is regular for large r.
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with R®) is the 3-curvature, the extrinsic curvature being K;; = —%(ij +Vn;) = —ﬁ&rhij
(K = hK;j, and n is a unit normal to ¢ = constant surfaces). The action for small gravitational
fluctuations h;; = a®(t)(8;; + vij) becomes:

1 . 1
S ~ /d4x (Nadm(wj)Q - Nadg(ak%‘jy),

for dSy4, using N = a = % leads to the familiar Bunch-Davies vacua (after imposing appropriate
regularity conditions). On the other hand, the solutions in Eq. (1) arise from the above action
in the limit, where the v;; become essentially time-independent. The Hamiltonian constraint:

KK — K*=R®) — 27 — %N*W - %h’j@iwﬂb , (5)

can be seen to be satisfied for Eq. (1) with R;; = $0,00;0, A = d(dgl). The on-shell action
for these solutions contains no divergence arising from the near singularity region |7| — oo.
Similarly, the boundary term Sp ~ [ d32\/gK is also regular. This apparent non-singularity
of the wavefunction of the universe ¥ = e** could, of course, easily be invalidated by possibly
singular higher derivative terms: one might expect stringy effects are important.

From the point of view of dS/CFT [9], using the discussion in [8], we expect that the
wavefunction of the universe (related to the partition function for the dual field theory) is
effectively an analytic continuation of that for similar solutions in Euclidean AdS, as they are
correlation functions (while observables such as n-point functions of bulk fluctuations are not).
The precise analytic continuation from Euclidean AdSgy1 to dS4y1 (in planar coordinates) is
obtained by z — —i1, Raqs — —iRgs. For the deformations we are considering, in the limit
of small deformations, we have seen that sources are turned on for the operators dual to bulk
graviton and scalar ¢ modes. This leads us to guess that the dual CF'T lives on the space g;; and
has been deformed by a source for the operator O? (although for our solutions, the deformations
are not small). In this perspective, these solutions are dual to corresponding deformations of
the Euclidean CFT dual to de Sitter space.

Correlation functions for operators dual to bulk scalar modes can be calculated by
differentiating with respect to the boundary sources. For instance, by using a Fourier
decomposition in terms of eigen-mode functions on g;; and evaluating the action, it can be
seen that the momentum space 2-point function in these dSs-deformed theories is just as in d.Sy.
The holographic stress tensor can be calculated using the usual counter term prescriptions for
these theories using [10, 5], giving (on one of the dS-patches, Figure 1):

g 1 g g 1 1 1 ..
TV = — |KY9 — Kh 4 (d— 1)h¥ + =GY — —0'¢d ¢ + =h" (9¢)?]| .
S7Gon +(d=1DhY + SGY = 20'99"¢ + Sh(09) (6)

For the present dS;i-deformations, with boundary metric h;; = 7_12 gij, the extrinsic curvature
is K;j = hjj, so that the stress tensor vanishes identically, using R = %a%aj o.

Recall that if a source for a bulk field is turned on, we generically expect a non-zero 1-point
function for the dual operator as a response to the source. Here, with the metric source g;;, we
expect (Tj;) # 0: This is at variance with the vanishing stress tensor above. In fact, requiring
that the holographic stress tensor vanishes (relatedly, trace anomaly encoding conformality of
the Euclidean CFT on the curved space) gives the conditions R = %a%aj o.

Now consider the (7 ~ 0) Fefferman-Graham expansion for an asymptotically locally de Sitter

spacetime:
dr> 174, 2 2/ i igj
7+ﬁ gij(x)+7 gij(x)—l—...]dwdw .

ds? = —
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With the leading source g?j, the sub-leading coefficients gfj, gfj, ... are generically non-zero [11],
and encode information about the state of the dual CF'T. Consider then the deformations above
as applied to the lower patch dS™: We have specified initial conditions for the bulk metric and
equivalently, the initial conditions/state for the dual Euclidean CFT. In the present case, we
have seen that, in fact, only g?j = g;; # 0 with gi; = 0, n > 0, requiring that the higher
order coefficients vanish, which leads to our solutions above. Using the small-7 Fefferman-
Graham expansion for both metric and scalar ¢ = 7(d=2)/ 2(¢° + 72¢% + ...), we need to solve
Ryn = dgyun + %8M¢6N¢ iteratively, and this gives:

1 1 1
gy ~ R — 50190i6 - 5 (R-500))g% and g5 =0 = Rj= 0600, (1)

1
(d-1)
(for a massless scalar A = d) also implying the higher order coefficients vanish. Likewise, with (19
being the Laplacian with respect to g?j, we have also obtained ¢ ~ [090: thus ¢(2) = 0 implies
[1°¢Y = 0. The vanishing of the stress tensor is also related to these sub-leading coefficients.
Our solutions have constrained these sub-leading pieces of the metric and scalar in the small
7 expansion to vanish. These conditions on the gj3, ¢", n > 0, are highly non-generic and
appear to be non-trivial constraints on the CF'T state.

3. Discussion

We have argued that these deformations of AdS and dS are constrained from a Fefferman-
Graham perspective, leading to certain singular structures. This suggests to turning on the
sub-leading coefficients in appropriate fashion towards de-singularizing them, and we hope to
explore this further. We believe these arguments also apply to the solutions in [12], which
although, quite different in interpretation, are related to the AdS null solutions (section 1
above) by coordinate transformations [5]. Here, diverging tidal forces (with finite curvature
invariants) lead to the large-z singularity [13].
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