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Abstract. We have described how to obtain the non-perturbative low energy effective field
theory of single field inflation from a generic multi-field model by integrating out heavy fields.
The features of heavy physics is described by the effective speed of sound, which leaves distinctive
observational signatures in the correlation functions of the curvature perturbation.

1. Introduction

The absence of the relevant inflaton in the standard model of particle physics demands that
inflation be described in the context of the speculative high energy theories, where plenty of
scalar fields which can contribute to the inflationary dynamics exist. Further, in multi-field
system, we can obtain interesting observational signatures, which deviate from the predictions
of the single field models of inflation and can be detected in near future. Thus, we have both
theoretical and phenomenological motivations to study multi-field inflation.

However, the very model of inflation relevant for the observed universe is still veiled yet, based
on the unverified high energy theories. To cope with our ignorance, we may take the effective field
theory approach to integrate out heavy fields from the parent theory, which contains multiple
fields. Then, we are left with the light “inflaton”, giving rise to effectively single field inflation.

Here, we have presented the systematics of effective single field description of multi-field
inflation. The effects of the heavy fields are left as a non-trivial speed of sound cs. This leaves
non-trivial features in the correlation functions of the curvature perturbation R. We explicitly
compute the 2- and 3-point functions in a simple but illustrative case. This article is based on
[1, 2, 3, 4].

2. Multi-field inflation with a single light field

For clarity, we have considered a 2-field model. But our approach can immediately be generalized
to more complicated models. We begin by considering the action:

S =

∫
d4x

√−g

[
m2

Pl

2
R − 1

2
gμν∂μφa∂νφa − V (φa)

]
, (1)

where the field indices is raised and lowered by the field space metric. Now, assume that we have
a set of background solutions φa

0
(t) and a(t) with given boundary conditions. Then, because of
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the invariance of the action under finite time translations t → t̂ = t + ξ0, we can generate a
family of non-trivial solutions of the form:

φa
Δ(t) =φa

0(t + ΔT ) , and (2)

aΔ(t) =a(t + ΔT )eΔR , (3)

where ΔT and ΔR are arbitrary constants of our choice.
We have now considered perturbations around the background solution. We have begun by

giving some definitions as: The fields π = π(t,x), and F = F(t,x) to represent departures from
the homogeneous and isotropic background solution φa

0(t) as:

φa(t,x) = φa
0(t + π) + Na(t + π)F , (4)

where Na(t+π) stands for the vector Na evaluated at t+π. Notice that π represents deviations
from φa

0
(t) exactly along the path defined by the background solution, whereas F parametrizes

deviations off the trajectory, but evaluated at t + π. In fact, the field F lives in the tangent
space spanned by Na(t + π). For gravitational sector, we have written the spatial metric hij as:

hij = a(t + π)e2Rδij . (5)

Then, it immediately follows that there must exist a non-trivial solution for π, R and F such
that,

π = constant , R = constant , F = 0 . (6)

Furthermore, provided that F is sufficiently massive, integrating it out will necessarily result in
a theory where π =constant and R =constant are preserved as non-trivial solutions to all orders
in perturbation theory. The structure of the perturbation action must be in the form which has
these non-trivial solutions.

Given that we have been eventually interested in integrating out F , it is convenient to work
in the comoving gauge, where π = 0. A special advantage of the comoving gauge is that the
gauge invariant comoving curvature perturbation exactly coincides with R, thus, any property
which our original R possesses is inherent in the comoving gauge. This is not the case, for
example, in the flat gauge. Then, we can systematically expand the action in powers of R and
F . For definiteness, let us explicitly compute up to cubic action. Then, to integrate out F , we
have solved for it to linear order and plugged the formal solution back into the action wherever
F appears1, and expanded in powers of M2

eff
, the effective mass of F , which to first order means

dis-regarding spacetime derivatives acting on F . This gives:

F = − 2φ̇0θ̇

HM2
eff

Ṙ , (7)

where φ̇2
0 = φ̇aφ̇a and θ̇ = NaVa/φ̇0 is the angular velocity for the trajectory. Plugging F back

into the action gives us the desired effective single field theory for R, which we have written as:
Seff = S2 + S3 with:

S2 =

∫
d4x

a3εm2
Pl

c2
s

[
Ṙ2 − c2

s

(∇R)2

a2

]
, and (8)

S3 =

∫
d4xa3

[
−εm2

PlR
(∇R)2

a2
+ 3

εm2
Pl

c2
s

Ṙ2R + εm2
Pl

(
1 − c2

s

)2 − 2

2c4
s

Ṙ3

H

+
m2

Pl

2a4

{(
3R− Ṙ

H

)[
ψ,ijψ,ij − (Δψ)2

]
− 4R,iψ,iΔψ

}]
, (9)

where ψ = −R/H + εΔ−1Ṙ/c2
s , and c−2

s = 1 + θ̇2/M2
eff

.

1 This prescription exactly reproduces the tree level effective action, while loop contributions are not captured.
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3. Features from heavy physics

Given the quadratic action by Eq. (8), we may insert the canonical quadratic action as:

S2,canonical =

∫
d4xa3εm2

Pl

[
Ṙ2 − (∇R)2

a2

]
, (10)

where cs = 1, by writing the whole effective action as:

Seff = S2,canonical +

∫
d4xa3εm2

Pl

(
1

c2
s

− 1

)
Ṙ2︸ ︷︷ ︸

≡S2,int

+S3 . (11)

That is, instead of absorbing the second term into the “free” part of the action, and hence, being
able to recast the quadratic effective action for the curvature mode as one with a modifed speed
of sound c2

s , we can also consider it as a perturbation. A particular advantage of working in this
manner is that the Green’s functions for the free part of our theory are simple, corresponding
to those of a light scalar field in quasi de Sitter spacetime, with dτ = dt/a being the conformal
time,

Rk(τ) =
iH√

4εk3mPl

(1 + ikτ) e−ikτ . (12)

This is in contrast to the Green’s functions for the theory, where we have included the interaction
term in the free part, which exhibits a modified speed of sound. The Green’s function for this
theory would only be available if c2

s were a constant, a situation we are not particularly interested
in restricting ourselves to. The two approaches would, of course, give us the same answers if the
latter were implementable.

Given an interaction Lagrangian, it is convenient to adopt the in-in formalism. The
expectation value evaluated at a time t of a time dependent operator Ô(t) is written as:〈
Ô(t)

〉
=

∞∑
n=1

in
∫ t

tin

dtn

∫ tn

tin

dtn−1 · · ·
∫ t2

tin

dt1

〈
0
∣∣∣[Hint(t1),

[
Hint(t2), · · ·

[
Hint(tn), Ô(t)

]
· · ·

]]∣∣∣ 0
〉

,

(13)
where tin is some early “in” time when the interaction is turned on. It is described by
the interaction Hamiltonian Hint(t) = −Lint(t) for cubic or higher order. We can then
straightforwardly compute the correction to the featureless power spectrum, which is easily
evaluated via Eq. (13). We have found that the contributions to the featureless power spectrum
PR arising from the interaction S2,int is given by:

ΔPR

PR
= κ

∫ ∞

0

dt

(
1 − 1

c2
s

)
sin (2κt) , (14)

where κ ≡ k/k� with k� being a fiducial reference, and the leading bispectrum by:

BR(k1, k2, k3) =2�
{
− 2iR̂k1

(0)R̂k2
(0)R̂k3

(0)

[
3

2
ε
m2

Pl

H2

∫
0

−∞
dτ

(
1 − 1

c2
s

)2

τ−1
dR̂∗

k1
(τ)

dτ

dR̂∗
k2

(τ)

dτ

dR̂∗
k3

(τ)

dτ

− ε
m2

Pl

H2

∫
0

−∞
dτ

ε − 3 + 3c2
s

c4
s

τ−2
dR̂∗

k1
(τ)

dτ

dR̂∗
k2

(τ)

dτ
R̂∗

k3
(τ) + 2 perm

+ ε
m2

Pl

H2
(k1 · k2 + 2 perm)

∫
0

−∞
dτ

ε − 2s + 1 − c2
s

c2
s

τ−2R̂∗
k1

(τ)R̂∗
k2

(τ)R̂∗
k3

(τ)

+ 2ε(ε − η‖)
m2

Pl

H2

∫
0

−∞
dτ

s

c4
s

τ−3
dR̂∗

k1
(τ)

dτ
R̂∗

k2
(τ)R̂∗

k3
(τ) + 2 perm

]}
, (15)
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Figure 1. Features of the (left) power spectrum and (right) fNL from the curvilinear trajectory
given by Eq. (16). As the turn is experienced (k = k�) oscillatory features arise, and vanish as
we probe smaller scales.

with s = ċs/(Hcs) and η‖ = −φ̈0/(Hφ̇0).
As an illustrative example, we have considered the case that there is a smooth single turn in

the otherwise straight trajectory. We have parametrized the turn using the hyperbolic cosine
function as:

η⊥ =
η⊥max

cosh2 [2 log(τ/τ�)/ΔN ]
, (16)

where η⊥ = θ̇/H and 
 denotes the moment when the bending is at its maximum. Then,
the resulting features in the power spectrum and the non-linear parameter fNL are shown
in Figure 1 [4]. We have seen that the features are correlated, which could be a distinctive
observational signature for future experiments.

4. Conclusions

We have presented the effective single field theory of multi-field inflation. When the mass
hierarchy is large, we can integrate out the heavy fields, and have single field desciption of
inflation. The footprints of the heavy fields are given as a non-trivial speed of sound cs. This
leaves features in the correlation functions of the curvature perturbation. Importantly, these
features are correlated with the degree of non-Gaussianity enhanced, which may be detected in
near future observations.

Acknowledgements

The author thanks Ana Achucarro, Gonzalo Palma and Subodh Patil for fruitful collaborations,
and has been partly supported by Korean-CERN fellowship.

References
[1] Achucarro A, Gong J O, Hardeman S, Palma G A and Patil S P 2011 Phys. Rev. D 84 043502 [1005.3848

[hep-th]]
[2] Achucarro A, Gong J O, Hardeman S, Palma G A and Patil S P 2011 JCAP 01 030 [1010.3693 [hep-ph]]
[3] Achucarro A, Gong J O, Hardeman S, Palma G A and Patil S P 2011 [1201.6342 [hep-th]]
[4] Achucarro A, Gong J O, Palma G A and Patil S P To appear

Proceedings of the 7th International Conference on Gravitation and Cosmology (ICGC2011) IOP Publishing
Journal of Physics: Conference Series 484 (2014) 012057 doi:10.1088/1742-6596/484/1/012057

4


