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Abstract. A model for the non-adiabatic collapse of a spherically symmetric anisotropic
distribution of matter accompanied with radial heat flux has been presented. This is an
inhomogeneous generalization of the model, describing collapse of a homogeneous distribution of
isotropic fluid and, therefore, provides a mechanism to investigate the impacts of inhomogeneity
and anisotropic stresses on the collapse of a radiating star.

1. Introduction

In cosmology and astrophysics, there are many outstanding issues relating to the collapse
of a self-gravitating system which continue to bother us even today [1, 2]. In the absence
of any established theory governing collapse, it has been found to be a good idea to make
separate investigations on the impact of various factors such as shear, inhomogeneity, anisotropy,
electromagnetic field, etc. on collapse. Through such investigations, one hopes to get a proper
understanding of the gross physical behaviour of a gravitationally collapsing body. In classical
GR, solutions to Einstein’s field equations for a self-gravitating system and their interpretation
provide valuable insight into a collapsing system. The mechanism of solving Einstein’s field
equations describing a physically realistic dynamical system and predicting its subsequently
evolutionary stages got a tremendous impetus when Vaidya [3] derived the metric corresponding
to the exterior gravitational field of a radiating star, and Santos [4] presented the junction
conditions joining the interior spacetime of the collapsing body to the Vaidya exterior metric.

The objective, here, is to examine the role of spacetime inhomogeneity and anisotropic stresses
on the collapse of a radiating star. We have reported a model, which describes the evolution of
a spherically symmetric inhomogeneous anisotropic fluid distribution radiating away its energy
in the form of radial heat flux and shrinking in size as the collapse proceeds. The model
is a generalization of an earlier work presented by Banerjee et al [5] describing collapse of a
homogeneously distributed isotropic fluid. In the present work, inhomogeneity in the background
spacetime has been introduced by considering the t = constant hyperspace of the 4-D manifold
as having a geometry of a 3-spheroid rather than a 3-sphere. Impacts of the inhomogeneous
nature of the background spacetime and anisotropic stresses on the collapse have been examined
by comparing the physical parameters in this set up to the behaviour of the corresponding
parameters in Banerjee et al [5] model, admissible as a special class in this model.

2. An inhomogeneously collapsing model

The spacetime metric formulated by Maiti [6] represents the gravitational field of a spherically
symmetric conformally flat shear-free and rotation-free fluid with heat flux as source. Making
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use of Maiti’s prescription, Banerjee et al [5] have presented a simple model for the collapse of a
homogeneously distributed isotropic fluid. Various aspects of the model have been extensively
examined by Schäfer and Goenner [7], by giving constraints on the model parameters complying
with various physical plausibility requirements. To generalize the model given in [5], let us
assume that the collapsing configuration is an inhomogeneous distribution of anisotropic fluid
with its background spacetime described by the metric:

ds2
−

= −A2
0(r)dt2 + R2(t)

[
1 + λkr2

1 − kr2
dr2 + r2(dθ2 + sin2 θdφ2)

]
. (1)

In Eq. (1), k �= 0 is a constant and λ is a parameter measuring departure from homogeneous
geometry. The t = constant hypersurface of the spacetime metric (1) has a geometry of a
3-spheroid representing a perturbation from that of a 3-sphere [8, 9, 10, 11, 12]. The energy-
momentum tensor of the fluid with anisotropic stresses filling the interior of the collapsing body
is written explicitly in the form:

Tαβ = (ρ + pt)uαuβ + ptgαβ + (pr − pt)χαχβ + qαuβ + qβuα , (2)

where ρ = energy density, pr = radial pressure, pt = tangential pressure, χi = unit space-like
four vector along the radial direction, ui = 4-velocity of the fluid, and qα = qδα

r is the radially
directed heat flux vector so that qαuα = 0. In view of Eqs.(1) and (2), Einstein’s field equations
lead to the following system of four independent equations (rendering G = c = 1):

8πρ =
1

R2

[
1

r2
− 1

r2B2
0

+
2B′

0

rB3
0

]
+

3Ṙ2

A2
0R

2
, (3)

8πpr =
1

R2

[
− 1

r2
+

1

B2
0r2

+
2A′

0

rA0B2
0

]
− 1

A2
0

(
Ṙ2

R2
+ 2

R̈

R

)
, (4)

8πpt =
1

R2

[
A′′

0

A0B2
0

+
A′

0

rA0B2
0

− B′

0

rB3
0

− A′

0B
′

0

A0B3
0

]
− 1

A2
0

[
2R̈

R
+

Ṙ2

R2

]
, and (5)

8πq = − 2A′

0Ṙ

A2
0B

2
0R3

, (6)

where, B0(r) =
√

(1 + λkr2)/(1 − kr2). Combining Eqs. (4) and (5), a time-independent
differential equation of the form:

A′′

0

A0B2
0

− A′

0

rA0B2
0

− B′

0

rB3
0

− A′

0B
′

0

A0B3
0

− 1

B2
0r2

+
1

r2
− δ(r) = 0 , (7)

may be obtained, if it is assumed that anisotropy in this model evolves as:

8π(pt − pr) = Δ(r, t) =
δ(r)

R2(t)
. (8)

Eq. (7) may be rewritten as:

(1 + λk − λkx2)
d2A0

dx2
+ λkx

dA0

dx
+

(
λk(λk + 1) − (1 + λk − λkx2)2δ(r)

k(1 − x2)

)
A0 = 0 , (9)

where a transformation x2 = 1 − kr2 has been introduced. Eq. (9) admits a solution for A0(r),
if the function δ(r) is specified as:

δ(x) =
k(1 − x2)[2λk(λk + 1)(2λk + 1) − (4λk + 7)λ2k2x2]

4(1 + λk − λkx2)3
, (10)
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which is regular at all interior points of the configuration. The solution for the metric function
A0(r) is then obtained as:

A0(r) = (1 + λk2r2)1/4
(
C + D

√
1 − kr2

)
, (11)

where C and D are arbitrary constants of integration. Consequently, the spacetime of the
collapsing shear-free stellar body with anisotropic stresses is described by metric

ds2
−

= −(1 + λk2r2)1/2
(
C + D

√
1 − kr2

)2

dt2 + R2(t)

[
1 + λkr2

1 − kr2
dr2 + r2dΩ2

]
. (12)

The model in [5] turns out to be a sub-class of a solution of the metric in Eq. (12), which follows
on setting λ = 0 and D = −1 [7]. Thus, without any loss of generality we have set D = −1 and
investigated the impact of inhomogeneity (λ �= 0) on collapse.

The evolution of the collapse in the stellar body with interior spacetime metric in Eq. (12)
is governed by the function R(t), which can be determined from the boundary conditions across
the boundary surface Σ of the collapsing configuration. The spacetime outside the collapsing
body is appropriately described by the Vaidya [3] metric:

ds2
+ = − (1 − 2m(v)/r̄) dv2 − 2dvdr̄ + r̄2dΩ2, (13)

where v denotes the retarded time and m(v) represents the total mass of the collapsing star.
The matching condition (pr)Σ = (qR(t)B0)Σ [4], linking smoothly the interior and the exterior
spacetimes across the boundary Σ, yields a differential equation of the form:

R̈R +
1

2
Ṙ2 − αṘ + β = 0, (14)

where, α and β are constants evaluated at the surface. A simple solution of Eq. (14) has been
obtained as [7]:

R(t) = nt, n = α −
√

α2 − 2β . (15)

For a collapsing configuration, the model parameters should be so chosen that Ṙ < 0. Similarly,
the rate of expansion is given by:

Θ = uα
;α =

3Ṙ

A0R
=

3

t(1 + λk2r2)1/4(C −√
1 − kr2)

, (16)

should also be negative as it describes a contracting body. Therefore, during the collapse from
time t = −∞ to t = 0, we must have (1 + λk2r2)1/4(C −√

1 − kr2) > 0, implying C > 1. The
upper bound on C can be obtained by constraining α2 > 2β so as to ensure that n remains real.

The dynamical variables of matter density, the radial and transverse pressures, and the heat
flux parameter associated with the collapsing stellar structure are obtained as:

8πρ =
k(λ + 1)(3 + λkr2)

n2t2(1 + λkr2)2
+

3

t2(1 + λk2r2)1/2(C −
√

1 − kr2)2
, (17)

8πpr = 8πρ − 4

t2(1 + λk2r2)1/2(C −
√

1 − kr2)2
, (18)

8πpt = 8πpr +
k2r2

[
2λk(1 + λk)(1 + 2λk) − λ2k2(1 − kr2)(4λk + 7)

]
4n2t2(1 + λk2r2)3

, and (19)

8πq = −
r
√

1 − kr2

[
Cλk

√
1 − kr2 + (2 − λk + 3λk2r2)

]
n2t3(1 + λkr2)(C −

√
1 − kr2)2(1 + λk2r2)5/4

. (20)
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It can be shown that ρ, pr, pt > 0 and ρ′, p′r, p′t < 0, if the conditions k > 0 and λ ≥ 0 are
satisfied simultaneously. Moreover, the weak energy condition ρ > pr, pt is satisfied in this
model.

The proper radius [R(t)r]Σ = ntrΣ is infinite when collapse begins, positive at any later
instant t and shrinks to zero at t = 0. The explicit expression for mass at any instant t within
the boundary radius rΣ is obtained as:

m(v)
Σ
= m(rΣ, t) =

nrΣt

2

⎡
⎢⎣(1 + λ)kr2

Σ

(1 + λkr2
Σ)

+
n2r2

Σ(
C −

√
1 − kr2

Σ

)2(
1 + λk2r2

Σ

)1/2

⎤
⎥⎦ , (21)

which shows that the collapse begins with an infinite mass and size of the configuration at
t → −∞ and it evaporates completely as the epoch t = 0 approaches. The collapse does not
have any impact on the mass to size ratio (2m(r, t)/rR)Σ as it is independent of time, and
therefore, remains constant throughout the evolution. Consequently, no event horizon is formed
during the collapse, since gtt = 1− [2m(r, t)/(rR)]Σ = 1− constant, always remains positive. As
the singularity is reached at t = 0, m(r, t) = 0, which implies that the collapsing body radiates
all its mass energy in the process and the collapse terminates into a naked singularity. The Ricci
curvature, in this model, diverges as 1/t2, which suggests that it is a weak curvature singularity.

3. Conclusion

In this paper, a general framework to investigate the impacts of inhomogeneous nature of
background spacetime and anisotropic stresses on a gravitationally collapsing system has been
formulated by generalizing the Banerjee et al [5] model. The set up provides a mechanism
to investigate the impact of inhomogeneity on collapse by comparing the evolution of an
inhomogeneous distribution (λ �= 0) of anisotropic matter with the evolution of a homogeneous
distribution (λ = 0) of isotropic matter [7]. The parameter λ is the measure of departure from
homogeneity in this construction. Though, in general, the physical parameters evolve differently
for two different background spacetimes, an in-depth analysis shows that the gross features of
the evolving system remain unaffected by the inhomogeneous perturbation of the background
spacetime.
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