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Abstract. Assuming that the spacetime is close to the Collins-Stewart solution, which will
play the role of the w-limit, and that the maximal velocity of the particles is small, we have been
able to show that for Bianchi II symmetry spacetimes with collisionless matter, the asymptotic
behaviour at late times is close to the special case of dust. The key was a bootstrap argument.

1. The Einstein-Vlasov system

A cosmological model represents a universe at a certain averaging scale. It is described via a
Lorentzian metric g,3 (we will use the signature — 4+ ++) on a manifold M, and a family of
fundamental observers. The metric is assumed to be time-orientable, which means that at each
point of M, the two halves of the light cone can be labelled past and future in a way which varies
continuously from point to point. This enables to distinguish between future-pointing and past-
pointing timelike vectors. This is physically a reasonable assumption from both a macroscopic
point of view, e.g., the increase of entropy, and also from a microscopic point of view, e.g., the
kaon decay. The interaction between the geometry and the matter is described by the Einstein’s
field equations (we use geometrized units, i.e., the gravitational constant GG, and the speed of
light in vacuum ¢ are set equal to one) as:

Gag = 87rTag s

where G5 is the Einstein tensor, and T, is the energy-momentum tesnsor. The Einstein tensor
satisfies:
VeGap = 0.

Thus, the energy-momentum tensor has to satisfy the same equation, which expresses the
conservation of energy. For the matter model, we have taken the point of view of kinetic
theory [1]. (The sign conventions of [2] are used. Also, the Einstein summation convention that
repeated indices are to be summed over is used. Latin indices run from one to three and Greek
ones from zero to three.)

Consider a particle with non-zero rest mass, which moves under the influence of the
gravitational field. The mean field that we have mentioned in the introduction has been described
now by the metric and the components of the metric connection. The worldline z¢ of a particle
is a timelike curve in spacetime. The unit future-pointing tangent vector to this curve is the
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4-velocity v¥, and p® = mov® is the 4-momentum of the particle. Let T, be the tangent space at
a point x® in the spacetime M, then we have defined the phase-space Py, for particles of mass
m as:

P ={(z% p*):z* € M, p* €Ty, pap®=-m? p’ >0}

We have considered from now on that all the particles have equal mass m. (For, how this relates
to the general case of different masses, see [3].) We have chosen units such that m = 1, which
means that a distinction between velocities and moments is not necessary. We have then that
the possible values for the 4-momenta are all future-pointing unit timelike vectors. These values
form the hypersurface:

Pl = {(.,L,a’ poc) tx” e Mv pa c Tacv papoc - _17 pO > 0}7

which we have called the mass shell. The collection of particles (galaxies or clusters of galaxies)
will be described (statistically) by a non-negative real valued distribution function f(xz®, p®)
on P;. This function represents the density of particles at a given spacetime point with given
4-momentum. A free particle travels along a geodesic. Consider now a future-directed timelike
geodesic parametrized by proper time s. The tangent vector is then at any time future-pointing
unit timelike. Thus, the geodesic has a natural lift to a curve on P; by taking its position and
tangent vector. The equations of motion, thus, define a flow on P;, which is generated by a
vector field L, which is called the geodesic spray or Liouville operator. The geodesic equations
are: da® dpe
—— =0, and ——=-T§p"7,

where the components of the metric connection, ie., I'ng, = g(ea,Vyeg) = gm;F%AY can be
expressed in the vector basis e, as (1.10.3 of [4]):

1
Lagy =3 (6,8 (9ay) + €4(98a) + €algyp) + 133905 + Moy gss — ngagya) :
The commutator of the vectors e, can be expressed with the following formula:
[ea; eﬁ] = nz/gew )

where ngﬁ are called the commutation functions. The restriction of the Liouville operator to the

mass shell is defined as:
I - dz® 0 dp® 0

= ds 0z° | ds opf

Using the geodesic equations, it has the followings form:

0
By
papa‘

B
L=p5 5 — TP

This operator is sometimes also called geodesic spray. If we denote, now, the phase-space density
of collisions by C(f), then the Boltzmann equation [5] in curved spacetime in our notation looks
as follows:

L(f) =),

which describes the evolution of the distribution function. Between collisions, the particles
follow the geodesics. We have considered the collisionless case, which is described via the Vlasov
equation, given as:

L(f)=0.



Proceedings of the 7th International Conference on Gravitation and Cosmology (ICGC2011) IOP Publishing
Journal of Physics: Conference Series 484 (2014) 012021 doi:10.1088/1742-6596/484/1/012021

The unknowns of our system are a 4-manifold M, a Lorentz metric g,3 on this manifold, and
the distribution function f on the mass shell P; defined by the metric. We have the Vlasov
equation defined by the metric for the distribution function and the Einstein’s equations. It
remains to define the energy-momentum tensor 7,3 in terms of the distribution and the metric.
Before that, we need a Lorentz invariant volume element on the mass shell. A point of the
tangent space has the volume element ]9(4)]%dp0dp1dp2dp3, (where g(4) is the determinant of
the spacetime metric), which is Lorentz invariant. Now, considering p° as a dependent variable,
the induced (Riemannian) volume of the mass shell considered as a hypersurface in the tangent
space at that point is:

1
@ = [po| g |2 dp" dp?dp®

Now, we have defined the energy-momentum tensor as:

a,@—/f papﬁw'

One can show that Ty, is divergence-free and thus, it is compatible with the Einstein’s equations.
For collisionless matter, all the energy conditions hold. In particular, the dominant energy
condition is equivalent to the statement that in any orthonormal basis, the energy density
dominates the other components of Ty,3, i.e., T,,3 < Tpo for each «, § (p. 91 of [6]). Using the
mass shell relation, one can see that this holds for collisionless matter. The non-negative sum
pressure condition in our case is equivalent to gg 7% > 0.
The Vlasov equation in a fixed spacetime can be solved by the method of characteristic (see
Chapter 3.2 of [7]):
a a
dX — P, and dP
ds
Let X%(s, %, p*), P%(s, z “) be the unique soultion of that equation with initial conditions
Xe(t, =%, p*) = 2% and P“(t, x®, p*) = p® Then the solution of the Vlasov equation can be
written as:

=-I% P°P7.

f(xav pa) = fO(Xa(O) xa) pa)) Pa(ou xa) pa))7

where fq is the restriction of f to the hypersurface t = 0. It follows that, if fy is bounded, the
same is true for f. We have assumed that f has compact support in momentum space for each
fixed ¢ (note that it is not possible in the Boltzmann case). This property holds if the initial
data fy has compact support, and if each hypersurface t = ¢y is Cauchy hypersurface [8].

2. Main result

Using the 3 + 1 formulation, our initial data are: (g;;(to), ki;j(to), f(to)), i-e., a Riemannian
metric, a second fundamental form, and the distribution function of the Vlasov equation
respectively, on a 3-dimensional manifold S(¢p). This is the initial data set at t = ty for the
Einstein-Vlasov system. We have decomposed the second fundamental form, by introducing o

as the trace-free part: ko, = ogp — Hgap , where H = ——k: is the Hubble parameter. We have
defined: $) = %, $y = —3(S3+58) and ¥ = —51=(53-%3), N = 75, and (V1) = —2%,

where R;; is the Ricci tensor. We have a number (different from zero) of particles at possible
different momenta, and we have defined P as the supremum of the absolute value of these
momenta at a given time ¢ as:

P(t) = sup {Ip| = (o™ pan) * 1 (t,0) # 0} .

We have obtained the following:
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Theorem: Consider any C'* solution of the Einstein-Viasov system with Bianchi II symmetry,
and with C* initial data. Assume that | (to)—3%!, [S—(to)|, [Z3(to)], [Z3(o)], 1Z3(t0)], 13 (t0)],
1223(t0)], [Z3(0)], |N1(to) — 3], [N2(to)l, |Ni(to)|, and P(ty) are sufficiently small. Then at
late times, after possibly a basis change, the following estimates hold:
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We will present the proof in a different paper.
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