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Abstract. A brief review has been given of all the Hamiltonians, and effective potentials
calculated hitherto covering the post-Newtonian (pN) dynamics of a two-body system. A
method has been presented to compare (conservative) reduced Hamiltonians with non-reduced
potentials directly at least up to the next-to-leading-pN order.

1. Post-Newtonian modelling and results of the two-body dynamics

The treatment of the two-body dynamics in general relativity through higher order post-
Newtonian (pN) order has to incorporate both spin- and tidal-force-induced mass multipoles
of the involved bodies [1]. In our analysis, we have focused on the spin-multipole degrees of
freedom, and presented some illuminating results that will be useful for the extraction of binary-
system parameters from the emitted gravitational waves. One easy way for the modelling of
such systems is the making use of the Tulczyjew’s singular stress-energy tensor [2] Tμν , with the
Greek coordinate indices running from 0 to 3, of the following form:
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∫
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]
, uμ =

dzμ

dτ
, δ(4) = δ(zσ − xσ) , (1)

with the body’s 4-velocity uμ, the 4-momentum pμ, the antisymmetric spin tensor Sμν modelling
the pole-dipole structure, and Dixon’s reduced quadrupole moment tensor Jμαβν modelling the
first order finite size effects while possessing the same symmetries as the Riemann tensor Rμαβν .
δ(4) is a 4-dimensional Dirac delta function,

∫
d4xδ(4) = 1, and || denotes the 4-dimensional

covariant derivative. The tensor Jμαβν is decomposed into stress, flow and the symmetric trace-
free mass quadrupole Qμν . The latter is given by the ansatz with a vector fμ to which, the spin
is orthogonal; i.e., Sμνfν = 0 (See [3], Eq. (5.11) therein), and

Qμν =
CQ

m

(
SμρS

ρ
ν − 1

3
PμνSρσSρσ

)
, Pμν = gμν − 1

fρfρ
fμf ν , (2)
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Table 1. Post-Newtonian Hamiltonians known to date.

Order 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

HN

PM + H1pN + H2pN + H2.5pN (t)[6] + H3pN + H3.5pN (t)[7, 8] + (H4pN ) + {H4.5pN (t)}
SO + HLO

SO + HNLO
SO + HN2LO

SO [9] + HLO,R
SO (t) + (HN3LO

SO )

S2
1 + HLO

S2

1

+ HNLO
S2

1

+ (HN2LO
S2

1

) + {HLO,R

S2

1

(t)}

S1S2 + HLO
S1S2

+ HNLO
S1S2

+ HN2LO
S1S2

[10] + HLO,R
S1S2

(t)

spin3 + [HLO
S3 ] + (HNLO

S3 )

spin4 + [HLO
S4 ]

{.} Eqs. of motion known [.] For black holes only (.) Not known (yet)

and is parametrized by one constant CQ in the leading order quadratic-in-spin level, in this way
fully encoding the rotational deformation. For black holes, one has CQ = 1 [4], while for neutron
star models, CQ depends on the equations of state [5] and varies between 4.3 and 7.4. The next
step in performing explicit pN-calculations is complex in various ways. We have compared two
prominent methods: One method aims at calculating a Hamiltonian. This is achieved by a
3+1 decomposition of Einstein’s field equations and the energy-momentum tensor from Eq. (1)
leading to constraints, which have to be fulfilled at all instants of time on the 3-dimensional
hypersurfaces of constant coordinate time. We have then used the ADM formalism as outlined
in [3] to find the canonical set of variables (ẑI , p̂I , ŜI) with the body label I = 1, 2 fulfilling their

standard canonical Poisson bracket relations {ẑi
I , p̂Jj} = δijδIJ and {ŜI(i), ŜI(j)} = εijkŜI(k) with

i, j, k running from 1 to 3. Letters embraced by round brackets indicate the components in local
Lorentz frames and are denoted by a, b, . . . from the beginning of the alphabet; so a can take the
“values” a ∈ {(0), (i)}. The spin-tensor components Sab are connected to the coordinate-frame
components through a vierbein transformation Sab = eaμebνSμν .

The ADM formalism also leads to a formula for calculation of the Hamiltonian in full reduced
phase-space by imposing the ADMTT or transverse-traceless gauge to the 3-metric on the 3-
dimensional hypersurfaces, and by choosing the canonical spin supplementary condition (SSC) to

get canonical variables for the bodies. By expansion of the constraints in pN-powers of v2

c2
∼ Gm

r2c2

(two-body system virial theorem, speed of light c is not put equal to one) one ends up with a
perturbative scheme for the calculation of the various pN-Hamiltonians. As the spin is of pN
order 1/c or 1/c2 depending on its strength, the formal labelling is such that we have called the
first post-Newtonian spin-Hamiltonians not 1.5pN or 2.5pN according to formal counting rules
but just as leading order (LO) ones and the higher corrections we have called next-to-leading
(NLO), and next-to-next-to-leading order (N2LO).

In Table 1, we have given a list of all known pN Hamiltonians for the case of maximally

rotating objects where |S| = Gm2a
c

with the dimensionless spin a. HN is the Newtonian

Hamiltonian, PM means “point-mass”, i.e., without spin, HnPN with n ∈ {1, 2, . . . } are the
conservative pure point-mass Hamiltonians, H

n

2
PN are the non-autonomous, radiation-reaction

(dissipative) pure point-mass Hamiltonians, SO refers to spin-orbit coupling, S1S2 to spin(1)-
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spin(2) coupling, and S2
1 to spin-quadrupole coupling involving the constant CQ. LO,R in the

index indicates the leading-order reaction counterpart, so HLO,R

S2

1

is the reaction counterpart to

the conservative part HLO
S2

1

. Obviously, the reaction part is much higher in its pN order than

the conservative part, but nevertheless they are important to cover the dynamics to 4.5pN order
consistently; up until now the reaction field for point masses is known to 3.5pN order [7, 8].
One other method to arrive at pN equations of motion is the derivation of effective potentials,
which are subtly related to Hamiltonians by a Legendre transformation. This derivation is most
effectivly achieved by sophisticated methods from Effective Field Theory (EFT) that uses full
knowledge from quantum field theoretical calculations. Up until now, pN potentials have been
calculated to 3pN order [11] for point masses and to NNLO for spin(1)-spin(2) coupling [12].

2. Comparison between Effective Field Theory potentials and ADM Hamiltonians

Effective potentials are part of a Lagrangian with the Newtonian kinetic energy TN , given as:

Leff = TN − Veff =
m1

2
v2
1 +

m2

2
v2
2 − Veff . (3)

The conservative effective potential Veff for two interacting bodies is pN expanded up to next-
to-leading order (NLO) spin effects in the following way:

Veff = VPM + V LO
SO + V LO

S2

1

+ V LO
S2

2

+ V LO
S1S2

+ V NLO
SO + V NLO

S2

1

+ V NLO
S2

2

+ V NLO
S1S2

. (4)

One key difference between EFT potentials and ADM Hamiltonians is that in most cases the
potentials still depend on the S(0)(i)-components of the spin tensor, which have to be fixed by
choosing an appropriate SSC.

For a direct comparison, a formal Legendre transformation of the non-reduced potentials is
conducted yielding the effective Hamiltonian Heff , which is followed by a reduction process
in phase-space in order to arrive at a canonical set of variables (See [13] for details). This
‘canonicalization’ is most transparently accomplished by reducing the following effective action:

Seff =

∫
dt Leff =

∫
dt

(
p1iż

i
1 + p2iż

i
2 −

1

2
S1abΩ

ab
1 − 1

2
S2abΩ

ab
2 − Heff (zI ,pI , SIab)

)
. (5)

Here, we have defined the angular velocity tensor Ωab ≡ Λ a
A Λ̇Ab rendering Ωab antisymmetric

and ΛAμΛA
ν = gμν , ΛAaΛ

A
b = ηab with (A,B, . . . ) ∈ {[0], [i]} being the body-fixed Lorentz-frame

labels. The reduced action has to read as:

Ŝeff =

∫
dt

(
p̂1i

˙̂zi
1 + p̂2i

˙̂zi
2 −

1

2
Ŝ1(i)(j)Ω̂

(i)(j)
1 − 1

2
Ŝ2(i)(j)Ω̂

(i)(j)
2 − Hcan

(
ẑI , p̂I , ŜI

))
(6)

with Ω̂(i)(j) = Λ̂
(i)

[k]
˙̂
Λ[k](j) given by a non-linear shift of Λ[k](i) to Λ̂[k](i) so that Λ̂[k](i)Λ̂[k](j) = δij .

This reduction is achieved by inserting the covariant SSC Sabu
b = 0 as well as its conjugate

condition Λ[i]aua = 0 into 1
2SabΩ

ab, and performing a pN approximate variable transformation
of spin and position reading as:

zi
1 = ẑi

1 −
[

1

2m2
1

p1kŜ1(i)(k)

(
1 − p2

1

4m2
1

)
− G

m2

m2
1

p1kŜ1(i)(k)

r̂12
+

3

2
G

p2kŜ1(i)(k)

m1r̂12

+
G

2

n̂k
12(n̂12 · p2)Ŝ1(i)(k)

m1r̂12
+ G

m2

m2
1

Ŝ1(k)(l)Ŝ1(i)(l)n̂
k
12

r̂2
12

+ G
n̂k

12Ŝ1(i)(l)Ŝ2(k)(l)

m1r̂2
12

]
, (7)
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Table 2. Agreement between EFT potentials and ADM Hamiltonians.

V SO
NLO Levi[14]

HSO
NLOADM Damour/Jaranowski/Schäfer[15, 16]

V SO
NLO Porto[17]

≈
V S1S2

NLO Porto/Rothstein[18, 19] HS1S2

NLOADM Steinhoff/Hergt/Schäfer[20, 16]

V
S2

1

NLO Porto/Rothstein[21, 22] H
S2

1

NLOADM Hergt/Steinhoff/Schäfer[23]

S1(i)(j) = Ŝ1(i)(j) −
[

p1[iŜ1(j)](k)p1k

m2
1

(
1 − p2

1

4m2
1

)
− 2Gm2

m2
1r̂12

p1[iŜ1(j)](k)p1k

+
3G

m1r̂12
p1[iŜ1(j)](k)p2k +

G

m1r̂12
p1[iŜ1(j)](k)n̂

k
12(n̂12 · p2) (8)

+
2Gm2

m2
1r̂

2
12

p1[iŜ1(j)](l)Ŝ1(k)(l)n̂
k
12 +

2G

m1r̂2
12

p1[iŜ1(j)](l)Ŝ2(k)(l)n̂
k
12

]
.

Those formulas are valid to transform the potentials at least to NLO to their canonical
Hamiltonian counterpart, which enabled us to obtain an overall agreement of all EFT NLO
potentials with their corresponding ADM Hamiltonian as displayed in Table 2 up to canonical
transformations indicated by ≈ (See [13] for a thorough investigation).

Acknowledgments

This work is supported by the Deutsche Forschungsgemeinschaft (DFG) through SFB/TR7
“Gravitational Wave Astronomy,” project STE 2017/1-1, and GRK 1523, and by the FCT
(Portugal) through PTDC project CTEAST/098034/2008.

References
[1] Binnington T and Poisson E 2009 Phys. Rev. D 80 084018
[2] Tulczyjew W M 1959 Acta Phys. Pol. 18 393
[3] Steinhoff J 2011 Ann. Phys. (Berlin) 523 296
[4] Thorne K S 1980 Rev. Mod. Phys. 52 299
[5] Laarakkers W G and Poisson E 1999 Ap. J. 512 282
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