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Abstract. Although there is little doubt that gravitational waves exist and carry energy as
they propagate, it has been notoriously difficult to explain where in spacetime this energy resides.
We have summarized a new approach to the localization of gravitational energy-momentum,
valid within the linear approximation to general relativity . Built around a local description of
the ezchange of energy-momentum between matter and linear gravity, the framework defines
a unique symmetric gravitational energy-momentum tensor, free of second derivatives, and
motivates a natural gauge-fixing programme, which renders the description unambiguous. Once
the gauge has been fixed according to this programme, the gravitational energy-momentum
tensor obeys the dominant energy condition: gravitational energy-density is never negative,
and gravitational energy-flux is never spacelike.

1. Introduction

Half a century ago, a simple argument established that gravitational waves carry energy and
can exchange this energy with matter. Often attributed to Feynman [1] (certainly popularized
by Bondi [2]), the argument asked us to imagine a gravitational detector comprising a rigid
rod along which two “sticky beads” are threaded. A passing gravitational wave then acts to
alter the proper distance between the beads, and this motion, opposed by friction, heats the
detector, and thus, mediates a transfer of energy from gravity to matter. Despite the simplicity
of this idea, even after fifty years, it has not been possible to explain where in spacetime this
gravitational energy resides, and it is generally accepted that attempts to do so are “looking for
the right answer to the wrong question” [3].

The elusiveness of the “right answer”, and the wrongness of the question, are often identified
as arising from gravity’s gauge freedom, the consequence of which is a one-to-many mapping
between physical spacetime and whatever localization of gravitational energy-momentum might
be proposed. However, there is no reason a priori that gauge dependence should preclude
the construction of a physically unambiguous tensor, provided we are prepared to remove the
gauge freedom in some well-defined way. Unfortunately, no previous approach has supplied
instructions of this nature, and more importantly, neither the construction of these energy-
momentum objects, nor their key properties, appear to favour one gauge over another; thus, it
appears impossible to justify any of these seemingly arbitrary choices as natural.

In spite of this difficulty, one aspect of this enduring problem stands opposed to conventional
wisdom, and motivates further consideration: when gravity and matter interact, the exchange of
energy can be localised! To see this, we need look no further than the sticky bead detector: here,
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the energy exchange is certainly localized in so far as it takes place only within the confines of the
detector. Furthermore, we can imagine a very small detector, much smaller than a wavelength
of the incident gravitational radiation, and observe that at each instant, a well-defined power
is developed in the detector as heat; thus, at least in this case, the rate of energy exchange is
associated with a particular point in spacetime. One might hope, therefore, that consistency with
this phenomenon would be enough to localize the energy and momentum of the gravitational
field outside the detector, or even when no detector is present.

Based on these ideas, a framework has been developed to localize the energy and momentum
of gravity, within the linear approximation to general relativity [4]; what follows is a summary
of this work.!

2. Derivation .
We define the gravitational field hqp, on a flat background spacetime (M, gap) by a diffeomorphism
¢ : M — M that maps the physical spacetime (M, g,3) onto the background?:

¢*gab = gab + hab' (1)

The physical spacetime is assumed to be “nearly flat”, and ¢ is chosen such that h,, is small

everywhere, so that the linear approximation to the Einstein’s field equations is valid:

Gop@hea = £Ta + O(h?), 2)
where T, = ¢*Ty, ~ O(h) is the matter energy-momentum tensor T, mapped onto the
background, and

G hea = VeV (ahy” = §9hap — §9uVoh + hian (V*h = VoVah™) (3)

)

is the linearized Einstein tensor G((I}] .
The gravitational energy-momentum tensor 7, is defined by seeking a symmetric tensor,
quadratic in V hg,, which solves:

Vaj,* +¢"(Vad,*) =0, (4)

neglecting terms O(h?). In the above equation, J,* = T“beub are the (1 energy, 3 momentum)
current-densities of matter, associated with the (1 timelike, 3 spacelike) vector fields e,” =

(p~1)*¢,”, the images of the Lorentzian coordinate basis ¢," = (9/0x*)® that generate the

translational symmetries of the background; the j,* = T“béub = 7, constitute the energy-

momentum current-densities of the gravitational field. Consequently, Eq. (4) indicates that
the extent to which material energy-momentum fails to be conserved at a point in the physical
spacetime is exactly equal and opposite to the extent to which gravitational energy-momentum
fails to be conserved at the corresponding point in the background. Interactions between matter
and gravity can then be understood in terms of a local exchange of energy and momentum
between the two.

It is not possible to construct a 74 to solve Eq. (4) for all gravitational fields, so a condition
must be placed on hyp in order to proceed. Of all possible symmetric tensors 74, quadratic in

! We have worked in units where ¢ = 1, write x = 87G, and use the sign conventions of Wald [5]:
N = diag(—1,1,1,1), [V, Valv® = 2V Vg = R%.qv’, and Ra, = RS,.,; Roman letters (except 4,7, k, 1)
are used as abstract tensor indices and Greek letters as numerical indices running from 0 to 3. The indices ¢, j, k, [
are reserved for spatial components, and run from 1 to 3.

2 As usual, fields defined on M have their indices raised and lowered with g., and those on M with Jab-
Lorentzian coordinates {z*} are commonly deployed in M, for which §.., = 7.
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V. hap, and all (non-trivial, linear and Lorentz invariant) field conditions, only one combination
solves the Eq. (4) as:

KTabh = ivahcdvbffd, and (5)

V%% =0, (6)

where the overbars signify trace-reversal. Because Eq. (6) is simply the equation of harmonic
gauge, which can always be satisfied through a choice of ¢, the field condition does not restrict the
physical applicability of our approach in any respect. In fact, the only effect of the field condition
is to vastly reduce the gauge freedom in our description of gravitational energy-momentum given
in Eq. (5). Essentially, Eq. (6) indicates that ¢ is to be chosen such that it maps Lorentzian
coordinates {*} of the background onto harmonic coordinates y*(p) = z#(¢4(p)) of the physical
spacetime. This ensures that the energy-momentum currents J,“ are defined by the generators
of a harmonic coordinate system; these represent the approximate translational symmetries of
the physical spacetime (present due to its small curvature), and give a sensible replacement for
Killing vectors in the absence of an exact symmetry.

3. Infinitesimal probe

A small amount of gauge freedom remains after the harmonic condition in Eq. (6) has been
enforced; this ambiguity is extinguished by considering the local exchange of energy-momentum
between gravity and an infinitesimal detector, as discussed in the introduction. The detector
takes the form of a matter “point-source”, with an energy-momentum tensor:

Too = M3(Z) + 31;;0:0;0(2),
Toi = L(I;; — Lij)0;6(%), and (7)
Tij = 51:58(2),

derived by shrinking a compact source down to a point®. The exchange is rendered completely
gauge invariant by the monopole-free micro-average: The incoming wave is split into a sum
of Heaviside step-functions, and the energy-momentum delivered by each is integrated over a
vanishingly small 4-volume centred on the probe*. The result:

(0" 7) | = —50(2) 150,17 ®)
is equal to the bare (i.e., not micro-averaged) energy-momentum delivered by the incident field
in transverse-traceless gauge. This motivates the programme of fixing the final piece of gauge
freedom by insisting that the incident h,, be transverse-traceless; consequently, 7, represents
the gauge-invariant gravitational energy-momentum that is accessible to an infinitesimal probe
at rest in the transverse-traceless frame.

4. Local positivity
The use of transverse-traceless gauge is further motivated by the positivity property of T4:
Whenever the gravitational field is transverse-traceless, 7,, describes positive energy-density

3 M, I,; and L;; are the mass, moment of inertia, and angular momentum of the detector respectively. Overdots
indicate differentiation with respect to ¢t = °, and the three spatial coordinates are abbreviated & = (z*, 2%, z3).
* Details are to be found in Sections IV B, and TV C of [4].
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and causal energy-flux, for all observers. To state this more rigorously: If, at some point p € M,
the gravitational field h,, obeys the transverse-traceless conditions:

Veha, =0, h=0, and u%hg =0, (9)
for some timelike vector u®, then 7, satisfies the following inequalities:

Vi’ >0, and (10a)
V740" <0, (10b)

at p, for any timelike vector v®. This is a remarkable and exceptionally valuable property that
has not been seen in any previous localization of gravitational energy-momentum. It extends
the dominant energy condition to include the energy-momentum of the gravitational field, and
ensures that 7., provides a description of gravitational energy-momentum that makes intuitive
sense on local scales.

5. Closing remarks

By considering the local exchange of energy-momentum between matter and linear gravity in Eq.
(4), a unique symmetric gravitational energy-momentum tensor 7., free of second derivatives,
was derived in Eq. (5); the harmonic gauge condition given in Eq. (6) arose as a natural
consequence of this derivation, and extinguished the vast majority of the description’s gauge
freedom. The last trace of gauge freedom was then fixed by insisting that the gravitational field
be transverse-traceless. This programme, not only guarantees an agreement with the gauge-
invariant energy-momentum transferred onto a infinitesimal probe given in Eq. (8), but also

ensures that 7, encodes positive energy-density in Eq. (10a) and causal energy flux given in
Eq. (10b).
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