Proceedings of the 7th International Conference on Gravitation and Cosmology (ICGC2011) IOP Publishing
Journal of Physics: Conference Series 484 (2014) 012005 doi:10.1088/1742-6596/484/1/012005

Effects of inhomogeneities on the expansion of the
Universe: A challenge to dark energy?

M-N Célérier
Laboratoire Univers et Théories (LUTH), Observatoire de Paris, CNRS, Université Paris
Diderot, 5 place Jules Janssen, 92190 Meudon, France

E-mail: marie-noelle.celerier@obspm.fr

Abstract. The current standard model of cosmology, the ACDM model, is based on the
homogeneous FLRW solutions of the Einstein’s equations to which some perturbations are
added to account for the CMB features and structure formation at large scales. This model
fits rather well to the observations, provided 95% of the energy density budget of the Universe
should be of an unknown physical nature, i.e., dark matter and dark energy. Now, the aim of
a cosmological model is not merely to reproduce the observations, but also to give a physical
understanding of the Universe we live in. Moreover, even if the assumption of homogeneity
seems to be more or less valid at large scales, it appears to be in contradiction with observations
at intermediate scales (between the scale of non-linear structure formation and that where
structures virialize). This is the reason why, during the last decade, a community of researchers
has been formed, whose aim has been to look for the best way to take into account the influence
of the inhomogeneities seen in the Universe, and to construct accurate cosmological models,
which could possibly get rid of the dark components. This task, which is still in its infancy,
is currently progressing towards promising results. Two types of methods can be found in the
literature: Spatial averaging of scalar quantities, and use of exact inhomogeneous solutions of
general relativity. We have given, here, a brief report of the second one.

1. Introduction

The current standard model of cosmology is based on an hypothesis, the cosmological
“Principle”, stating that the Universe is spatially homogeneous beyond some large scale.
However, even if the value of this scale is usually claimed to be of the order of 100 Mpc,
this assumption has never been proved and is still under debate. A mathematical simplification
describing the Universe by a FLRW model at all scales is, therefore, commonly used. Up to
1998, this model was Einstein-de Sitter (EdS).

Then, in 1998, it was found that the Supernova Ia (SN Ia) luminosity is dimmer than predicted
by the EAS model [1]. As a consequence, this model was ruled out. However, contrary to what
was widely advocated at the time, and still is, one cannot put forward accelerated expansion at
this stage. Actually, all current evidence for dark energy is indirect, because the only effect of
dark energy is on the expansion history of the Universe.

What usually done in cosmology is: First assume a cosmological model, then fit it to data
measuring observables sensitive to the expansion history through the redshift, thus, obtain the
values of the cosmological parameters of the assumed model.
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In an FLRW cosmology, the expansion rate H = a/a is given by:

H%(z) = H? {QA exp [/Oz 1(17’;13 [1+wa(z)]| + Q1+ 2)% + Qur(1 +2)3 + Qr(1 + z)4} .
(1)

It depends on four constants: the fraction of dark energy 4, the fraction of curvature y, the
fraction of matter, including dark matter €,;, the fraction of radiation 2z, and one function
wp, which is the equation of state parameter of the dark energy. Since H?(0) = Hg, ¥;Q; = 1,
which removes one constant. € ~ 0 from the WMAP experiment measuring the CMB power
spectrum, and Qg is also small from the CMB (5 x 107°). The two other constants Q, and Qyy,
and the function wy are rather well constrained by their effect on the expansion history, which
is manifest through various cosmological observables. The result is the “concordance” model
with Qp ~ 0.7, Qpr ~ 0.3 (with ~ 0.25 from dark matter) and w = —1.

Is it a good cosmological model? It seems to work, since it reproduces nearly all the
cosmological data. But, 95% is “dark”, i.e., not explained. What about a model whose
components are so fundamentally not understood, and could the accelerated expansion be a
mere mirage?

It has been shown shortly after the discovery of the SN Ia dimming that inhomogeneities in
our local Universe can in principle mimic an accelerated expansion. A general demonstration
for models spherically symmetric around the observer has been provided in [2]. Various
inhomogeneous models with no cosmological constant reproducing the supernova data have
also been proposed in [3, 4, 2, 5].

To understand intuitively how such an effect can arise, it is worth turning to the very
pedagogical model proposed in [5]. This model is composed of two regions. An inner
homogeneous region with a given density is matched at some redshift to another homogeneous
region with a higher density. Both the regions decelerate, but since the inner void expands faster
than the outside region because it contains less matter, the observer inside the void, observing
a source in the outer region, experiences an apparent acceleration of the Universe expansion.

Three methods have been proposed to take inhomogeneities into account: (i) Linear
perturbation theory, which is valid when both the curvature and density contrasts remain small
(this is not the case in the non-linear regime of structure formation and where the SN Ia are
observed), (ii) Averaging of scalar quantities, promising and currently improving, and (iii)
Exact inhomogeneous solutions, which are valid at all scales and are exact perturbations of
the Friedmann background, which they can reproduce as a limit with any precision. This last
one is the method we have considered in the following:

2. One patch Lemaitre-Tolman (LT) models with A =0

2.1. The LT solution

The Lemaitre[6]-Tolman[7] (LT) solution is a spherically symmetric and non-static solution of
Einstein’s equations, with a dust gravitational source. Its metric, in comoving coordinates and
synchronous time gauge, in units where ¢ = 1, is:

R

ds* =dt* — ————
§ 1+ 2E(r)

dr? — R?(t,r)(d0? + sin® 9 dp?), (2)

where the prime denotes derivation with respect to the radial coordinate r. A first integral of
the field equations gives a dynamical equation for R as:

. 2M A
R?=2E+"— +

R §R27 (3)
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where the dot denotes derivation with respect to the time coordinate t. The mass density in
energy units, coming from another field equation is:

~FR @)
Integrating Eq. (3) gives:

R ~
/ dR
) 2B +2M/R+ LAR?

=t—tp(r). (5)

This solution exhibits three integration functions: The energy per unit mass of the particles
within the comoving shell of radius r, E(r), the gravitational mass of the particles in that
shell M(r), and the “bang time” ¢p(r) meaning that the singularity (bang or crunch) is not
simultaneous for different shells.

To reproduce the cosmological data with no dark energy, the cosmological constant A is set
to zero. Then Eq. (5) can be solved explicitly and the solutions are:

e when E < 0 (elliptic evolution):

R(t,r)—(_]\jE)(l—cosn), and (6)
o\3/2
n—sinn = 20 i), )

where n(t,r) is a parameter.

e when E = 0 (parabolic evolution):

Rit.r) = [ 330 - ] (5)

e when E > 0 (hyperbolic evolution):

R(t,r) = %(coshn —1), and 9)
3/2
sinhn —n = 2?\; (t—tp(r)). (10)

Note, however, that a given model can exhibit an E(r) function whose sign changes with r
while going smoothly through zero. Even if, for simplification sake, the parametric solutions are
commonly used with a fixed sign for E(r), one must be aware of this possible property of the
LT models.

Since all the above formulas are covariant under coordinate transformations of the form
7 = g(r), one of the three integration functions can be fixed at our convenience by the choice
of g. Therefore, each LT solution is fully determined by two arbitrary functions of r and a
coordinate choice.
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Figure 1. The void for the GBH central observer. Dotted curve: The matter density in units
of the critical density. Dash-dot curve: Qur. Solid curve: Hr, the transverse expansion rate.
Dashed curve: Hp, the longitudinal expansion rate.

2.2. Examples of one patch LT models with A =0

This class of solutions has been first used to construct void models in which a local LT under-
density centred on the observer and a priori parametrized is matched at some redshift to an EdS
model. We have discussed below two examples of such models.

In [8], the so called GBH models are specified by their matter content Q,/(r) and their
expansion rate H(r), and are governed by five free constant parameters. As we have said
above, they are smoothly matched to an EdS universe at large redshift. These models are fitted
to a series of observations (CMB first peak, Large Scale Structures (LSS), Baryon Acoustic
Oscillations (BAO), SN Ia data, Hubble Space Telescope measure of Hy, age of the globular
clusters, gas fraction in clusters) to constrain their parameters. They suggest the possibility
that the Universe spherically smoothened around us might be a large (around 2.5 Gpc) void
within an EdS universe, with no dark energy. This void is depicted in Figure 1, with the
matter content §2;; and the two expansion rates of the LT model, the transverse expansion rate
Hr = R/R and the longitudinal expansion rate H;, = R'/R’'. However, even if they are able
to reproduce most of the observations, they exhibit a value of Hy too low as regards to the
latest measurements, which give Hy ~ 74 (km/s)/Mpc [9]. This can be seen in Figure 2, where
Hy ~ 64 (km/s)/Mpc.

To try to get rid of this drawback, a set of five LT void models have been proposed in [10].
They have been tested against the full CMB spectrum, BAO, SN, and Hy. The inclusion of
a non-zero overall curvature drastically improves the goodness of fit of these models, bringing
them very close to that of the ACDM model. And, by varying the density profile, the value
of Hy has been increased. However, these models have still difficulty exhibiting a value of Hy
sufficiently high as regards that of [9].

In another work [11], an LT model has been fitted to two sets of observables: The angular
diameter distance together with the redshift-space mass density, and the angular diameter
distance together with the expansion rate, assumed to have the same form on our past light
cone as in the ACDM model. The two left arbitrary LT functions have been determined and
have given the mass distribution in spacetime. Without any priori assumption on its form, the
current density profile does not exhibit a void but a hump, and the observer is located in a
shallow and wide funnel on top of this hump, as shown in Figure 3. Moreover, in this model,
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Figure 2. One of the likelihood for the most simple GBH model (ry characterizes the size of
the void): in yellow with 1-, 2-; and 3-0 contours = the likelihood for the combined data set; in
blue, purple and green respectively with 1- and 2-0 contours = the likelihood for the individual
SN Ia, BAO and CMB data sets. The value of Hy is too low, around 64 (km/s)/Mpc.
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Figure 3. The current density profile of [11] does not exhibit a void but a hump. The observer
is located in a shallow and wide funnel on top of this hump.

the value of Hy is that measured, by construction.

However, single patch LT models with a central observer have been criticized on the ground
of being in contradiction with the Copernican Principle. Now, when using such models in
cosmology, one should not claim that the observer is at the very centre of any actual spherically
symmetric universe. Rather, these models must be considered as mathematical simplifications
or preliminary steps. Here, the inhomogeneities are smoothened over angles around us and only
their radial component is considered. Note that this is an improvement as regards to FLRW
models, where the inhomogeneities are smoothened over the whole space. Since, the exact central
location of the observer is mandatory by construction, these models cannot take anisotropies
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into account. Effects merely designed to test them, such as CMB dipole and low multipoles,
kSZ effect, CMB spectral distortion, cosmic parallax, etc., can in no way be used to test these
models [12].

3. Swiss-cheese and meat-ball models

3.1. Example of an LT Swiss-cheese model

For a more physical representation of our observed Universe, Swiss-cheese models with no dark
energy have also been proposed. In [13], the model is a lattice of LT bubbles with radius > 350
Mpc in an EdS background. Initially, the void at the centre of each hole is dominated by negative
curvature and a compensating over-density matches smoothly the density and curvature EdS
values at the border of the hole. Since the voids expand faster than the cheese, the over-dense
regions contract, and become thin shells at the borders of the bubbles while under-dense regions
turn into emptier voids, eventually occupying most of the volume. An extra very important
result is that the evolution of the voids, bends the photon paths, and affects more the photon
physics than the geometry of the inhomogeneities.

3.2. Quasi-spherical Szekeres Swiss-cheese models

Another exact solution of Einstein’s equation has been used to build Swiss-cheese models,
the quasi-spherical Szekeres (QSS) solution. The Szekeres solutions [14] are dust solutions of
Einstein’s equations with no symmetry at all, i.e., no Killing vector. Their metric in comoving
coordinates and synchronous time gauge is given as:

ds? = dt? — e?¥dr? — GZﬁ(de + dyz), (11)

where o and [ are functions of (¢,7,z,y) to be determined from the Einstein’s equations. The
B = 0 sub-family has not been considered so far in cosmology, since it does not contain the LT
solution as a spherically symmetric limit.

The ' # 0 sub-family can be parametrized so that a set of 5 independent functions of
r determines each solution. The sign of one of them fixes the geometry of the ¢t = constant
3-surfaces and the type of evolution (elliptic, parabolic, hyperbolic). The sign of another
function determines the geometry of the ¢t = constantr = constant 2-surfaces, which can be
quasi-spherical, quasi-plane or quasi-hyperbolic. Only the quasi-spherical solution has been
found useful in cosmology, since it is the only one which exhibits the three Friedmann limits
(hyperbolic, flat and spherical). This solution possesses an origin, not a centre.

Its metric in comoving coordinates and synchronous time gauge can be written, with the
parametrization proposed in [15] as:

' — OE'/E)?
( /EP,

2
2 _ 12 2 _ 2
ds” =dt T % E2(

dz? + dy?), (12)

where @ is a function of ¢ and r, k is a function of r, and FE is a function of r, x and y, given as:

S| /z—P\? y—Q 2
E=— L. 1
2 [( 5 ) +< 5 > i
with S(r), P(r), Q(r) are functions of 7.

Applying the Einstein’s equations to the metric in Eq. (12) and assuming that the energy-
momentum tensor is that of dust, these equations reduce to the following two:

; (13)

% = % —k+ %A@z, and (14)
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2M' —6ME'/E
kp = /B (15)
P2(®' — PE'/E)

where k = 87(G, A is the cosmological constant, and M is an arbitrary function of r.
As in the LT solution, the bang time function ¢5(r), follows from Eq. (14) as:

D ~
/ dd
) \/—k: +2M/® + LAD?

=t—tp(r). (16)

Note that Eq. (16) exhibits the same form as Eq. (5) of the LT solution. Therefore, for A = 0,
the parametric solutions are the same, with the Szekeres function k(r) corresponding to the LT
function —2E(r), i.e.,

e when k£ > 0 (elliptic evolution):

M
O(t,r) = ?(1 —cosn), and (17)
k‘3/2
1 —sinn = W(t—tB(T))- (18)
e when k = 0 (parabolic evolution):
9 1/3
o(t.r) = [0 tal)?] (19)
e when k£ < 0 (hyperbolic evolution):
M
O(t,r) = ?(1 —coshn), and (20)
(—k)3/2
sinhn —n = 7 (t—tp(r)). (21)

Remember that, as for the LT case, the sign of k(r) can change in a given model.

Since all the formulas given so far are covariant under coordinate transformations of the form
7 = g(r), this means that one of the functions k(r), S(r), P(r), Q(r), M(r) or tg(r) can be fixed
at our convenience by the choice of g. Hence, each QSS solution is fully determined by only five
functions of r and a coordinate choice.

To begin with and for simplicity sake, axially symmetric classes of QSS models with A = 0
have been used to construct Swiss-cheese models, which are able to reproduce the supernova
data [16]. Here, the holes are no more spheres, as in LT Swiss-cheeses, but axially symmetric
patches and the cheese is either an EdS or an open FLRW background. The luminosity
distance is computed on axially directed null geodesics. Compared to those obtained with
corresponding LT Swiss-cheese models, the results of these are quantitatively different but
qualitatively comparable. To reproduce the observational data, structures of at least 500 Mpc
are necessary.
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3.8. Meat ball models

The meat ball models are the opposite of the Swiss-cheese models. The holes are replaced by
balls and the cheese by voids, which occupy more volume than the over-densities [17]. Most of
the photons travel through the voids, missing these localized over-densities. The most interesting
finding is that the lensing probability distribution function is skewed with a mode at de-magnified
values. It is, thus, possible that these lensing effects, possibly increased by a selection effect, and
also because they are stronger in an homogeneous background without cosmological constant
than in a ACDM model, might explain part of the “dark energy”. But these lensing effects alone
cannot explain the full dark energy. However, added to other effects, they can boost LT models
or make smaller the volume of voids needed in Swiss-cheese models.

4. Conclusion and prospects

The first very simple inhomogeneous models used to deal with the dark energy problem and
proposed very soon after the discovery of the dimming of the luminosity of the supernovae have
been with time replaced by more and more sophisticated ones. These are able to reproduce to
a better accuracy, not only the supernova observations but nearly all the available cosmological
data.

To try to improve the reproduction of our observed local Universe, from FLRW models
to axially symmetric Szekeres Swiss-cheese models, the number of symmetries has decreased,
aiming at the removal of any of them. It has been claimed that the geometric, dynamical,
lensing effects of inhomogeneities act in the same direction [17]. Their addition can, therefore,
modify markedly our view of the ACDM universe.

Even if at the end of the day, the effects of inhomogeneities should prove insufficient to
explain out dark energy, the current results obtained with exact models show that their impact
on the value of the cosmological parameters will have to be considered as non-negligible. Now,
to be able to take properly into account all the data available to constrain the models, and in
particular LSS, BAO and CMB, perturbation theories applicable to the LT and Szekeres models
will have to be developed.

The final aim is to construct the metric of the cosmos directly from observations. Preliminary
codes have been developed for LT models [18, 19, 20], but two main problems remain: The choice
of the scale, and to get rid of spherical symmetry. This implies a jump to full numerical relativity,
which might be the future aim of cosmological investigations.
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