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Abstract. Given a n−dimensional compact Riemannian manifold (M, g) with n ≥ 5, we
consider the following semi-linear elliptic equation :

Pg(u) := ∆2
gu+ divg (a(x)∇gu) + b(x)u = f(x) |u|N−2 u+ λh(x) |u|q−2 u

where the functions a, b and h are in suitable Lebesgue spaces, 2 < q < N and λ > 0 a
real parameter, f is a smooth positive function and the operator Pg is coercive. Under some
additional conditions, we obtain results concering the existence of strong solutions of the above
equation in H2

2 (M).

1. Introduction
In 1983 Paneitz discovered a particular conformally fourth-order operator defined on
4−dimensional smooth Riemannian manifolds [1]. In 1987, Branson generalized the definition to
higher dimensions in [2] as follows. Let (M, g) be smooth, compact n−dimensional Riemannian
manifold with n ≥ 5, and u ∈ C4(M). The Paneitz-Branson operator Png is then defined via [2]:

Png (u) = ∆2
gu− divg (an(x)du) +Qngu

where

an(x) =
(n− 2)2 + 4

2(n− 2)(n− 1)
Sg.g −

4

n− 2
Ricg,

Qng =
1

(n− 1) (n− 4)
∆gSg +

n3 − 4n2 + 16n− 16

4(n− 1)2(n− 2)2 (n− 4)
S2
g −

4

(n− 4) (n− 2)2
|Ricg|2 ,

being ∆g, Sg and Ricg the Laplace-Beltrami operator, the scalar and the Ricci curvatures of
g, respectively. The Paneitz-Branson operator enjoys interesting conformal properties that are

very similar to those of the conformal Laplacian operator. Remark that if g̃ = ϕ
4

n−4 g , with
ϕ a positive function of class C4(M), is a conformal metric to g, then for all u ∈ C4(M),

Png (uϕ) = ϕ
n+4
n−4

Png̃ (u). In particular, if u ≡ 1 then Png (ϕ) = Qng̃ϕ
n+4
n−4

.
Many interesting results on Paneitz-Branson operator and related topics have been recently

obtained by several authors, we refer the reader to Refs. [3]- [10]. Here we recall a few of these
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results that are pertinent to our investigation, see the list P1)-P3) below.

Let (M, g) be an n−dimensional compact, smooth and oriented Riemannian manifold with n ≥ 5,
H2

2 (M) be the standard Sobolev space consisting of function in L2(M) whose derivatives up to
the second order are in L2(M), and let N = 2n

n−4 be the associated Sobolev critical exponent.

Now, we define the best constant K◦ of the embedding H2
2 (Rn) ⊂ LN (Rn) given by

1

Ko
=
n(n2 − 4)(n− 4)ω

4
n
n

16

where ωn is the volume of the unit Euclidean n−sphere (Sn, h).

P1) In 2002, F. Robert and P. Esposito in [10] considered the following equation

∆2
gu+ divg (a(x)∇gu) + b(x)u = f(x) |u|N−2 u+ h(x) |u|q−2 u

where: i) a ∈ Λ+∞
(2,0)(M) is a smooth symmetric (2, 0)-tensor field, ii) b, h, f are smooth

functions in M , with f positive, and iii) 2 < q < N . They established the following
remarkable result:

Theorem 1 Let (M, g) be an n−dimensional compact Einsteinian manifold with n ≥ 8.
Assume that Png is coercive and let f ∈ C∞(M), f > 0 such that there exists x◦ ∈M with
f(x◦) = maxx∈M f(x), ∆f(x◦) = 0 and

4(n2 − 4n− 4)

3(n+ 2)
|Weylg(x◦)|2+(n−6)(n−8)

∆2
gf(x◦)

f(x◦)
+2(n−6)(n−8)

〈∇gf(x◦), Ricg(x◦)〉
f(x◦)

> 0.

Then, there exists g̃ conformal to g such that Qng̃ (x) = f(x).

P2) In 2010, M. Benalili in [5] considered the equation:

∆2
gu+ divg (a(x)∇gu) + b(x)u = f(x) |u|N−2 u (1)

where f is a positive C∞−function on M, a ∈ Lr(M) and b ∈ Ls(M), with r > n
2 , s > n

4 .
He established the following result:

Theorem 2 Let (M, g) is an n−dimensional compact manifold with n ≥ 8 and for
2 < p < 5, 9

4 < s < 11 or n = 7, 7
2 < p < 9, 7

4 < s < 9 assume that there exists
x◦ ∈M such that f(x◦) = maxx∈M f(x) and

n2 + 4n− 20

6(n− 6)(n2 − 4)
Sg(x◦) +

(n− 4)

2n(n− 2)

∆gf(x◦)

f(x◦)
> 0.

For n = 6, 3
2 < p < 2, 3 < s < 4, assume that Sg(x◦) > 0. Then, the equation (1) has a

weak solution in H2
2 (M).

P3) Recently, M. Benalili and the author proved in [7], the following result:

Theorem 3 Let (M, g) be a compact manifold of dimension n ≥ 6, a ∈ Lr(M), b ∈ Ls(M),
with r > n

2 , s > n
4 , 0 < q < 2 and f a positive C∞−function on M. We suppose that Pg is

coercive and the existence of a point x◦ ∈M such f(x◦) = maxx∈M f(x) and ∆gf(x◦)
f(x◦) < 1

3

(
(n−1)n(n2+4n−20)
(n−6)(n−4)(n2−4)

(1 + ‖a‖r + ‖b‖s)
− 4
n −
)
Sg(x◦) if n > 6

Sg(x◦) > 0 if n = 6
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Then, there exists λ∗ > 0 such that for any λ ∈ (0, λ∗), the equation

∆2
gu+ divg (a(x)∇gu) + b(x)u = f(x) |u|N−2 u+ λ |u|q−2 u

has a weak solution in H2
2 (M).

In this paper, we look for solutions to the following semi-linear elliptic equation:

Pg(u) := ∆2
gu+ divg (a(x)∇gu) + b(x)u = f(x) |u|N−2 u+ λh(x) |u|q−2 u (2)

where a ∈ Lr(M), b ∈ Ls(M) and h ∈ Ld(M), with r > n
2 , s > n

4 and d > N
N−q := α, 2 < q < N

and λ > 0 a real parameter. In doing so, we assume the following conditions:

(h1) The operator Pg is coercive, that is: ∃Λ > 0 : 〈Pg(u);u〉 ≥ Λ ‖u‖2H2
2 (M) ,∀u ∈ H2

2 (M);

(h2) The function h doesn’t vanish almost everywhere on M.

(h3) The parameter λ fulfills 0 < λ < λ1 with

λ1 :=
q (N − 2)

2 (N − q)
Λ
q
2 (max((1 + ε)K◦, Aε))

− q
2 ‖h‖−1

α .

Our main results state as follows:

Theorem 4 Let (M, g) be an n−dimensional compact, smooth and oriented Riemannian
manifold with n > 6 and f a smooth positive function on M . Let a ∈ Lr(M), b ∈ Ls(M)
and h ∈ Ld(M), with r > n

2 , s > n
4 , d > N

N−q and 2 < q < N . We assume that the conditions

(h1), (h2) and (h3) are satisfied and that there exists x◦ ∈ M such that f(xo) = maxx∈M f(x)
and(

n(n− 2
√

6 + 2)(n+ 2
√

6 + 2)− (n− 6)(n− 4)3(n+ 2)

3(n+ 2)(n− 4)2(n− 6) (1 + ‖a‖r + ‖b‖s)
4
n

Sg(x◦)−
(n− 4)∆f(x◦)

2f(x◦)

)
> 0.

Then, the equation (2) possesses a nontrivial solution in H2
2 (M).

Theorem 5 Let (M, g) be a compact, smooth and oriented Riemannian manifold of dimension
n = 6 under the same conditions of theorem 4 with

Sg(x◦) > 0

Then, the equation (2) possesses a nontrivial solution in H2
2 (M).

2. Generic existence result
Throughout this section, we consider the energy functional Jλ, for each u ∈ H2

2 (M),

Jλ(u) =
1

2

∫
M

(
(∆gu)2 − a(x) |∇gu|2 + b(x)u2

)
dv(g)−λ

q

∫
M
h(x) |u|q dv(g)− 1

N

∫
M
f(x) |u|N dv(g)

First, we have the following lemma, whose proof is easy and can be found in [7].

Lemma 6 ‖u‖ = (
∫
M

(
(∆gu)2 − a(x) |∇gu|2 + b(x)u2

)
dv(g))

1
2 is an equivalent norm of the

usual one of H2
2 (M) if only if the operator Pg is coercive.
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The main tool to prove our result is the Mountain-Pass lemma of Ambrossetti-Rabinowitz
given by the following lemma:

Lemma 7 Let J ∈ C1(E,R) where (E, ‖.‖) is a Banach space. We assume that:
(i) J(0) = 0.
(ii) ∃r,R > 0 such that J(u) ≥ R > 0 for all u ∈ E such that ‖u‖ = r.
(iii) ∃v ∈ E such that lim supt−→+∞J(tv) < 0.

If

c = min
η∈Γ

max
t∈[0,1]

(J (η(t))) where Γ =
{
η ∈ C1 ([0; 1] ;E) : η (0) = 0, η (1) = v

}
then there exists a sequence (un)n in E such that:

J (un) −→ c and ∇J (un) −→ 0 in E∗

where E∗ is the dual space of E. Moreover, we have that: c ≤ supt≥0 J(tv).

It is easily seen that Jλ is a C1 functional and its Fréchet derivative is given by:

〈∇Jλ (u) , v〉 =

∫
M

(∆gu.∆gv − a(x)g(∇gu,∇gv) + b(x)uv) dv(g) +

−λ
∫
M
h(x) |u|q−2 uvdv(g)−

∫
M
f(x) |u|N−2 uvdv(g).

Moreover, the functional Jλ verifies the Mountain-Pass conditions, namely:

Lemma 8 Suppose that the conditions of (h1), (h2) and (h3) of section 1 are satisfied. Then
Jλ fulfills the following properties

1-There exist constants r,R > 0 such that Jλ(u) ≥ R > 0, ‖u‖ = r.
2-There exists v ∈ H2

2 (M), with ‖v‖ > r, such that Jλ(v) < 0.

Lemma 9 Let (M, g) be a n−dimensional compact, smooth and oriented Riemannian manifold
with n ≥ 5 and suppose that conditions (h1)- (h2) are satisfied. Then each Palais-Smale sequence
at level cλ is bounded in H2

2 (M).

Proof. The proof follows from the coerciveness of the operator Pg, the Sobolev’s inequality and
the condition (h2).

Theorem 10 Let (M, g) is an n−dimensional compact, smooth and oriented Riemannian man-
ifold with n ≥ 5. Let (um)m be a Palais-Smale sequence at level cλ. Assume that conditions
(h1)-(h2) and (h3) are satisfied and that

cλ <
1

(1 + ε)
n
n−4K

n
n−4
◦ maxx∈M f(x)

.

Then, there is a subsequence of (um)m converging strongly in H2
2 (M).

Proof. We follows closely the method used in [7].
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3. The sharp case
Let P ∈M , we define the distance function ρ on M by

ρP (Q) =

{
d(P,Q) if d(P,Q) < ig(M)
δ(M) if d(P,Q) ≥ ig(M)

and ig(M) is the injectivity radius of M . Furthermore, we define the space Lp(M,ργ) as follows.

Definition 11 Let (M, g) be a compact 5 ≤ n-dimensional Riemannian manifold. We consider
the space Lp(M,ργ) where 1 ≤ p ≤ +∞ of measurable functions u on M such that ργ |u|p is
integrable, i.e.

‖u‖pp,ργ :=

∫
M
ργ |u|p dv(g) < +∞

Now, we use the following Hardy-Sobolev inequalities proven in [5] (the Hardy-Sobolev
inequalities for the singular Yamabe equation was proven in [9]).

Theorem 12 [5] Let (M, g) be a compact 5 ≤ n-dimensional Riemannian manifold and p, q
and γ three real numbers satisfying γ

p = n
q −

n
p − 2 and 2 ≤ p ≤ 2n

n−4 .

For any ε > 0, there is a constant A(ε, q, γ) such that

∀u ∈ H2
2 (M) : ‖u‖2p,ργ ≤ (1 + ε)K(n, 2, γ)2 ‖∆gu‖22 +A(ε, q, γ) ‖u‖22

In particular: K(n, 2, 0)2 = K◦ is the optimal constant of Sobolev inequality.

Theorem 13 [5] Let (M, g) be a compact 5 ≤ ndimensional Riemannian manifold and p, q and
γ three real numbers satisfying: 1 ≤ q ≤ p ≤ nq

n−2q and γ < 0.

•.If γ
p = n(1

q −
1
p)− 2, then the imbedding Hq

2(M) ⊂ Lp(M,ργ) is continuous.

•.If γ
p > n(1

q −
1
p)− 2, then the imbedding Hq

2(M) ⊂ Lp(M,ργ) is compact.

We consider the following equation:

∆2
gu+ divg

(
a(x)

ρσ
∇gu

)
+
b(x)

ρµ
u = f(x) |u|N−2 u+ λ

h(x)

ρβ
|u|q−2 u (3)

where a, b and h are three smooth functions and the distance function defined before in section
1, 2 < q < N and λ > 0 a real parameter. The energy functional Jλ: H2

2 (M) −→ R associated
to equation (3) is defined as:

Jλ(u) =
1

2

∫
M

(
(∆gu)2 − a(x)

ρσ
|∇gu|2 +

b(x)

ρµ
u2

)
dv(g) +

−λ
q

∫
M

h(x)

ρβ
|u|q dv(g)− 1

N

∫
M
f(x) |u|N dv(g),

where u ∈ H2
2 (M) and it is well-known that the critical points of Jλ are the weak solutions of (3).

Theorem 14 Let 0 < σ < n
r < 2, 0 < µ < n

s < 4 and 0 < β < N
d < N − q. We suppose that

the conditions (h1), (h2) and (h3) are satisfied and

sup
u∈H2

2 (M)

Jσ,µ,βλ (u) <
2

nK
n
4◦ (f(x◦))

n−4
4

Then, the equation (3) has a non trivial solution uσ,µ,β ∈ H2
2 (M).

Proof. The result follows in that if we put ã = a(x)
ρσ , b̃(x) = b(x)

ρµ and h̃(x) = h(x)
ρβ

, then

ã ∈ Lr(M), b̃ ∈ Ls(M) and h̃ ∈ Ld(M), with r > n
2 , s > n

4 and d > N
N−q .
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4. Critical cases
Strategies developed in [7] and [8] enable us to derive another result, that refers to the critical

cases when σ = 2, µ = 4, and β = n(q−2)
2 − 2q.

Theorem 15 Let (M, g) be an n−dimensional compact, smooth and oriented Riemannian
manifold with n ≥ 5 and suppose that the conditions (h1), (h2) and (h3) are satisfied. In
addition, let (um)m := (uσm,µm,βm)m be a sequence in H2

2 (M) such that:{
Jσ,µ,βλ (um)→ cσ,µ,βλ for all n ∈ N
∇Jσ,µ,βλ (um)→ 0 weakly in H2

2 (M)
with cσ,µ,βλ <

2

nK
n
4◦ (f(x◦))

n−4
4

(4)

and
1 + a−max(K(n, 2, σ); A(ε, σ)) + b−max(K(n, 2, µ); A(ε, µ)) > 0. (5)

Then, the equation

∆2
gu+ divg

(
a(x)

ρσ
∇gu

)
+
b(x)

ρµ
u = f(x) |u|N−2 u+ λ

h(x)

ρβ
|u|q−2 u

has a nontrivial solution uσ,µ,β ∈ H2
2 (M).

Proof. We follow closely the method used in [7] and [8]. First by using the condition (5)
we obtain, as in [7], that the sequence (Λα,µ)α,µ of constants of coerciveness of the operator

u→ ∆2
gu+ divg

(
a(x)
ρσ ∇gu

)
+ b(x)

ρµ u is bounded below by a constant Λ > 0 as (α, µ)→ (2−, 4−).

Let (um)m ⊂ H2
2 (M), such that :

Jσ,µ,βλ (um) = cσ,µ,βλ + o(1) and ∇Jσ,µ,βλ (um) = o(1) in
(
H2

2 (M)
)∗

Then we have:

Jσ,µ,βλ (um)− 1

N

〈
Jσ,µ,βλ (um), um

〉
=

(
1

2
− 1

N

)
‖um‖2 − λ

(
1

q
− 1

N

)∫
M
h(x) |um|q dv(g)

By Hölder and Sobolev inequalities, we get that

Jσ,µ,βλ (um)− 1

N

〈
∇Jσ,µ,βλ (um), um

〉
= cσ,µ,βλ + o(1)

and

cσ,µ,βλ + o(1) ≥
(

1

2
− 1

N

)
‖um‖2 −

(
1

q
− 1

N

)
(max((1 + ε)K◦, Aε))

q
2 ‖h‖α ‖um‖

q
H2

2 (M)

In addition the hypothesis (h1) and (h2) are satisfied and if we have ‖un‖ ≥ 1, then we obtain

‖um‖ ≤

[(
N − 2

2
− λN − q

q
Λ−

q
2 (max((1 + ε)K◦, Aε))

q
2 ‖h‖α

)−1

Ncσ,µ,βλ

] 1
q

+ o(1)

Then (um)m is bounded in H2
2 (M). The rest of the proof is the same as in Theorem 10.
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Concluding remark. To prove main Theorems given in the Introduction, let δ ∈
(

0,
ig(M)

2

)
and η ∈ C∞(M) such that:

η(x) =

{
1 if x ∈ B(x◦, δ)
0 if x ∈M −B(x◦, 2δ)

For ε > 0, we define the radial function uε by:

uε(x) :=
η(x)(

ε2 + (ξρ)2
)n−4

2

with ξ = (1 + ‖a‖r + ‖b‖s)
1
n . (6)

We next point out that, by resorting to the strategy outlined in [7, 8], the function given by (6)
can be proved to verify condition (4) of the generic theorem. This step completes our discussion
on the solutions of Equation (2).
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