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Abstract. We present a technique based on extended Lax Pairs to derive variable-coefficient
generalizations of various Lax-integrable NLPDE hierarchies. As illustrative examples, we
consider generalized KdV equations, and three variants of generalized MKdV equations. It
is demonstrated that the technique yields Lax- or S-integrable NLPDEs with both time- AND
space-dependent coefficients which are thus more general than almost all cases considered earlier
via other methods such as the Painlevé Test, Bell Polynomials, and various similarity methods.
Some solutions are also presented for the generalized KdV equation derived here by the use of
the Painlevé singular manifold method. Current and future work is centered on generalizing
other integrable hierarchies of NLPDEs similarly, and deriving various integrability properties
such as solutions, Backlund Transformations, and hierarchies of conservation laws for these new
integrable systems with variable coefficients.
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1. Introduction
Variable Coefficient Korteweg de Vries (vcKdV) and Modified Korteweg de Vries
(MKdV)equations have a long history dating from their derivation in various applications[1]-[10].

Almost all studies, including those which derived exact solutions by a variety of techniques,
as well as those which considered integrable sub-cases and various integrability properties
by methods such as Painlevé analysis, Hirota’s method, and Bell Polynomials treat vcKdV
equations with coefficients which are functions of the time only. For instance, for generalized
variable coefficient NLS (vcNLS) equations, a particular coefficient is usually taken to be a
function of x[11], as has also been sometimes done for vcMKdV equations[12]. The papers [13]-
[14] are somewhat of an exception in that they treat vcNLS equations having coefficients with
general x and t dependences. Variational principles, solutions, and other integrability properties
have also been considered for some of the above variable coefficient NLPDEs in cases with
time-dependent coefficients.

In applications, the coefficients of vcKdV equations may include spatial dependence, in
addition to the temporal variations that have been extensively considered using a variety of
techniques. Both for this reason, as well as for their mathematical interest, extending integrable
hierarchies of nonlinear PDEs (NLPDEs) to include both spatial and temporal dependence of
the coefficients is worthwhile.
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Given the above, we consider a direct method for deriving the integrability conditions of both
a general form of variable-coefficient MKdV (vcMKdV) equation, as well as a general, variable-
coefficient KdV (vcKdV) equation. In both cases,the coefficients are allowed to vary in space
AND time.

The method used is based on directly establishing Lax integrability (or S-integrability to use
the technical term) as detailed in the following section. As such, it is rather general, although
subject to the ensuing equations being solvable. We should stress that the computer algebra
involved is quite challenging, and an order of magnitude beyond that encountered for integrable,
constant coefficient NLPDEs.

However, there is an additional important proviso or qualifier that needs to be stressed. In
order that Lax integrability ensues from the compatibility of the Lax Pair, i.e., the compatibility
condition(s) for the Lax Pair contain the NLPDE under question, a form for each entry in the
Lax Pair must be guessed a priori. Since there is no strict algorithm for doing this, one must
rely on something like inspired guesswork. The inspiration comes from basing the Lax Pair on
the known one for the existing constant coefficient version of the NLPDE under investigation.
However, non-trivial guesswork must now go into adding additional terms and coefficients in
each entry of this Lax Pair, and also generalizing some of the constants (related to the spectral
parameter of the constant coefficient NLPDE) to functions.

We shall explain the above paragraph, which may seem rather dense at the first reading, in
more detail in the context of the actual examples in the following two sections.

The outline of this paper is as follows. In Section 2, we briefly review the Lax Pair method
and its modifications for variable-coefficient NLPDEs, and then apply it to three classes of
generalized vcMKdV equation. Section 3 considers an analogous treatment of a generalized
vcKdV equation. Some solutions of the generalized vcKdV equations of Section 3 are then
derived in Section 4 via the use of truncated Painlevé expansions. Section 5 briefly considers
the results and conclusions of the paper, and discusses the natural next steps or directions for
further work.

2. Extended Lax Pair method and application to three generalized vcMKdV
equations
In the Lax pair method [15] - [16] for solving and determining the integrability conditions for
nonlinear partial differential equations (NLPDEs) a pair of n×n matrices, U and V needs to be
derived or constructed. The key component of this construction is that the integrable nonlinear
PDE under consideration must be contained in, or result from, the compatibility of the following
two linear Lax equations (the Lax Pair)

Φx = UΦ (1)

Φt = V Φ (2)

where Φ is an eigenfunction, and U and V are the time-evolution and spatial-evolution
(eigenvalue problem) matrices. From the cross-derivative condition (i.e. Φxt = Φtx) we get

Ut − Vx + [U, V ] = 0̇ (3)

known as the zero-curvature condition where 0̇ is contingent on v(x, t) being a solution to the
nonlinear PDE. A Darboux transformation can then be applied to the linear system to obtain
solutions from known solutions and other integrability properties of the integrable NLPDE.

We first consider the following three variants of generalized variable-coefficient MKdV
(vcMKdV) equations:
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vt + a1vxxx + a2v
2vx = 0 (4)

vt + b1vxxxxx + b2v
2vxxx + b3vvxvxx + b4v

3
x + b5v

4vx = 0 (5)

vt + c1vxxxxxxx + c2v
2vxxxxx + c4vvxxvxxx + c5v

2
xvxxx+

+ c6vxv
2
xx + c7v

4vxxx + c8v
3vxvxx + c9v

2v3
x + c10v

6vx = 0. (6)

These equations, which we shall always call the physical (or field) NLPDEs to distinguish
them from the many other NLPDEs we encounter, will be Lax-integrable or S-integrable if we
can find a Lax pair whose compatibility condition (3) contains them.

One expands the Lax pair U and V in powers of v and its derivatives with unknown functions
as coefficients. This results in a VERY LARGE system of coupled NLPDEs for the variable
coefficient functions. Upon solving these (and a solution is not guaranteed, and may prove to be
impossible to obtain in general for some physical NLPDEs), we simultaneously obtain the Lax
pair and integrability conditions on the ai, bi, and ci for which (4) - (6) are Lax-integrable.

The results are given in the following three subsections. The details of derivations are omitted
for the sake of readability.

2.1. Conditions on the ai

6a1a
3
2x − 6a1a2a2xa2xx + a1a

2
2a2xxx −

Kt

K
a3

2 + a2
2a2t − a3

2a1xxx+

v + 3a1xxa
2
2a2x − 6a1xa2a

2
2x + 3a1xa

2
2a2xx = 0 (7)

where K(t) is an arbitrary function of t.

2.2. Conditions on the bi
b3 = 2(b2 + b4), b5 = H1(t)(2b2 − b4). (8)

where H1(t) is an arbitrary function of t and b2 or b4 are considered psuedo-arbitrary. We also
do not display one more condition which we omit because it is very long. Now, once b2 or b4
is given all other coefficients can be found. The latter equation may look a bit daunting but is
quite easily managed with the aid of a CAS (in this case MAPLE) once b2 and b4 are given.
One example is presented here:

2.3. Conditions on the ci

c4 = −10c2 + 5c3 − 4c5 + 2c6 (9)

c8 =
2

3
c9 + 4c7 (10)

c10xc6 − c6c10x − 2c5c10x + 2c5xc10 + c10xc3 − c3xc10 = 0 (11)

−12c10xc7 + 12c7xc10 + c10xc9 − c9xc10 = 0 (12)

5Gc3
10 − 2Hc10xc7xc10 +Hc2

10c7xx + 2Hc2
10xc7 −Hc7c10c10xx = 0 (13)

14c3c
2
10x − 7c3c10c10xx − 60c2c

2
10x + 30c2c10c10xx + 60c2xc10c10x − 30c2xxc

2
10 +

+4c5xc10c10x − 14c3xc10c10x + 7c3xxc
2
10 − 4c5c

2
10x + 2c5c10c10xx − 2c5xxc

2
10 = 0 (14)

18c3c
2
10x − 18c3c10c10xc10xx + 3a3c

3
10c10xxx − 18c3xc10c

2
10x + 9c3xc

2
10c10xx − 60c2c

3
10x

+60c2c10c10xc10xx − 10c2c
2
10c10xxx + 60c2xc10c

2
10x − 30c2xc

2
10c10xx − 30c2xxc

2
10c10x

+10c2xxxc
3
10 + 6c5xc10c

2
10x − 3c5xc

2
10c10xx − 3c5xxc

2
10c10x + 9c3xxc

2
10c10x − 3c3xxxc

3
10

−6c5c
3
10x + c5c10c10xc10xx − c5c

2
10c10xxx + c5xxxc

3
10 = 0 (15)
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c1xxxxxxxc
7
10 + 5040c1xc10c

6
10x − 7c1xxxxxxc

6
10c10x − c1c

6
10c10xxxxxxx − 630c1xc

4
10c

3
10xx

+140c1xc
5
10c

2
10xxx − 7c1xc

6
10c10xxxxxx − 2520c1xxc

2
10c

5
10x − 21c1xxc

6
10c10xxxxx

+840c1xxxc
3
10c

4
10x + 210c1xxxc

5
10c

2
10xx − 35c1xxxc

6
10c10xxxx − 210c1xxxxc

4
10c

3
10x

−35c1xxxxc
6
10c10xxx + 42c1xxxxxc

5
10c

2
10x − 21c1xxxxxc

6
10c10xx + 5040c1c

3
10c

2
10xc10xxc10xxx

−630c1c
4
10c10xc10xxc10xxxx − 2520c1xc

4
10c10xc10xxc10xxx +

Ht

H
c7

10 − c6
10c10t − 5040c1c

7
10x

+15210c1c10c
5
10xc10xx − 4200c1c

2
10c

4
10xc10xxx + 840c1c

3
10c

3
10xc10xxxx − 630c1c

4
10c

2
10xxc10xxx

−126c1c
4
10c

2
10xc10xxxxx + 70c1c

5
10c10xxxc10xxxx + 42c1c

5
10c10xxc10xxxxx

+14c1c
5
10c10xc10xxxxxx − 12600c1c

2
10c

3
10xc

2
10xx + 2520c1c

3
10c10xc

3
10xx − 420c1c

4
10c10xc

2
10xxx

−12600c1xc
2
10c

4
10xc10xx + 7560c1xc

3
10c

2
10xc

2
10xx + 3360c1xc

3
10c

3
10xc10xxx

−630c1xc
4
10c

2
10xc10xxxx + 210c1xc

5
10c10xxc10xxxx + 84c1xc

5
10c10xc10xxxxx

+5040c1xxc
3
10c

3
10xc10xx − 1890c1xxc

4
10c10xc

2
10xx − 1260c1xxc

4
10c

2
10xc10xxx

+420c1xxc
5
10c10xxc10xxx + 210c1xxc

5
10c10xc10xxxx − 1260c1xxxc

4
10c

2
10xc10xx

+280c1xxxc
5
10c10xc10xxx + 210c1xxxxc

5
10c10xc10xx = 0 (16)

−240c3c
5
10x + 720c2c

5
10x + 120c5c

5
10x + 40c3xxxc

3
10c

2
10x − 20c3xxxc

4
10c10xx + 6c2c

4
10c10xxxxx

−180c2xc
3
10c

2
10xx + 30c2xc

4
10c10xxxx + 360c2xxc

2
10c

3
10x + 60c2xxc

4
10c10xxx − 120c2xxxc

3
10c

2
10x

+60c2xxxc
4
10c10xx − 30c5xc

3
10c

2
10xx + 5c5xc

4
10c10xxxx + 60c5xxc

2
10c

3
10x + 10c5xxc

4
10c10xxx

−20c5xxxc
3
10c

2
10x + 10c5xxxc

4
10c10xx + c5c

4
10c10xxxxx − 120c3xxc

2
10c

3
10x − 20c3xxc

4
10c10xxx

−2c3c
4
10c10xxxxx + 60c3xc

3
10c

2
10xx − 10c3xc

4
10c10xxxx + 30c2xxxxc

4
10c10x + 5c5xxxxc

4
10c10x

−10c3xxxxc
4
10c10x − 6c2xxxxxc

5
10 + 2c3xxxxxc

5
10 − c5xxxxxc

5
10 − 720c2xc10c

4
10x − 120c5xc10c

4
10x

+240c3xc10c
4
10x + 480c3c10c

3
10xc10xx − 180c3c

2
10c10xc

2
10xx − 120c3c

2
10c

2
10xc10xxx

+40c3c
3
10c10xxc10xxx + 20c3c

3
10c10xc10xxxx − 360c3xc

2
10c

2
10xc10xx + 80c3xc

3
10c10xc10xxx

+120c3xxc
3
10c10xc10xx − 1440c2c10c

3
10xc10xx + 540c2c

2
10c10xc

2
10xx + 360c2c

2
10c

2
10xc10xxx

−120c2c
3
10c10xxc10xxx − 60c2c

3
10c10xc10xxxx + 1080c2xc

2
10c

2
10xc10xx − 240c2xc

3
10c10xc10xxx

−360c2xxc
3
10c10xc10xx + 180c5xc

2
10c

2
10xc10xx − 40c5xc

3
10c10xc10xxx − 60c5xxc

3
10c10xc10xx

−240c5c10c
3
10xc10xx + 90c5c

2
10c10xc

2
10xx + 60c5c

2
10c

2
10xc10xxx

−20c5c
3
10c10xxc10xxx − 10c5c

3
10c10xc10xxxx = 0 (17)

where G(t) and H(t) are arbitrary functions of t.

3. Generalized vcKdV Equations
Here, we will applying the technique of the last section in exactly the same fashion to generalized
vcKdV equations, but will omit the details for the sake of brevity. Please note that the coefficients
ai, as well as the quantities labeled ci in this section are totally distinct or different from those
given the same symbols in the previous section. All equations in this section are thus to be read
independently of those in the previous one.

Consider the generalized vcKdV equation in the form

ut + a1uuxxx + a2uxuxx + a3u
2ux + a4uux + a5uxxx + a6uxxxxx + a7u+ a8ux = 0 (18)

As before, we consider the generalized variable-coefficient KDV equation to be integrable if
we can find a Lax pair which satisfies (3). In the method given in [14] one expands the Lax
pair U and V in powers of u its derivatives with unknown function coefficients and require
(3) to be equivalent to the nonlinear system. This results in a system of coupled PDEs for
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the unknown coefficients for which upon solving we simultaneously obtain the Lax pair and
integrability conditions on the ai. The results, for which the details are similar to the previous
section and so are omitted here, are as follows

a1−4 =
H1−4

p
, a7 =

pt + (pa5)xxx + (pa6)xxxxx + (pa8)x
p

(19)

where H(t) is an arbitrary function of t, c1, c2 are arbitrary constants and a1, a5, a6, a8 and
p(6= 0) are taken to be arbitrary functions of x and t. This form helps to give integrability
conditions in specific cases. For example an integrable variable-coefficient KDV equation would
require that H1−3(t) = a6−8(x, t) = 0. For a7(x, t) = 0 we would need to further require that
(through a little algebraic manipulation) the following be satisfied(

H(t)

a1

)
t

+H(t)

(
a5

a1

)
xxx

= 0 (20)

Note that with the choices p(x, t) = e
∫
m(t)dt, H1(t) = H2(t) = 1

2µ2
H4(t) = a(t)e

∫
m(t)dt,

H3(t) = µ1e
2
∫
m(t)dt, a5(x, t) = 5µ2a6(x, t) = µ2a(t)

µ1e
∫
m(t)dt and a8(x, t) = n(t), we see that

a7(x, t) = m(t) and thus we get back exactly the integrability conditions found in earlier papers
on generalized vcKdV systems.

4. Painleve Analysis Method
Given a nonlinear partial differential equation in (n + 1)-dimensions, without specifying initial
or boundary conditions, we may find a solution about a movable singular manifold φ − φ0 = 0
as an infinite Laurent series given by

u(x1, . . . , xn, t) = φ−α
∞∑
m=0

umφ
m. (21)

Note that when m ∈ (Q − Z) (21) is more commonly known as a Puiseux series. One can
avoid dealing with Puiseux series if proper substitutions are made, as we will see a little later
on. Plugging this infinite series into the NLPDE yields a recurrence relation for the um’s. As
with most series-type solution methods for NLPDEs we will seek a solution to our NLPDE as
(21) truncated at the constant term. Plugging this truncated series into our original NLPDE
and collecting terms in decreasing order of φ will give us a set of determining equations for our
unknown coefficients u0, . . . , uα known as the Painleve-Backlund equations. We now define new
functions

C0(x0, . . . , xn, t) =
φt
φx0

(22)

C1(x0, . . . , xn, t) =
φx1
φx0

(23)

... (24)

Cn(x0, . . . , xn, t) =
φxn
φx0

(25)

V (x0, . . . , xn, t) =
φx0x0
φx0

(26)

which will allow us to eliminate all derivatives of φ other than φx0 . For simplicity it is common
to allow Ci(x0, . . . , xn, t) and V (x0, . . . , xn, t) to be constants, thereby reducing a system of
PDEs (more than likely nonlinear) in {Ci(x, t), V (x, t)} to an algebraic system in {Ci, V } for
(i = 0, . . . , n).
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4.1. Exactly Solvable Examples
Consider the following example

ut +
H1

F ( xC + t)
uuxxx +

(
c1H3 − 2H1 + 1

F ( xC + t)

)
uxuxx +

H3

F ( xC + t)
u2ux +

H4(t)

F ( xC + t)
uux

+

(
c1(c1H3(t) + 2H4 − 2H1)

8F ( xC + t)

)
uxxx +

(
c1(c1H3 − 2)

40F ( xC + t)

)
uxxxxx

+

(
(5c1(H1 −H4)− c1 − 3c2

1H3 − 20F ( xC + t)C

20F ( xC + t)

)
ux = 0 (27)

Note that in this example we have a7 = 0. The leading order analysis yields α = 2. Therefore
we seek a solution of the form

u(x, t) =
u0

φ(x, t)2
+

u1

φ(x, t)
+ u2(x, t) (28)

This forms an auto-Backlund transformation. For simplicity we will allow our initial solution
u2(x, t) to be 0. Plugging this into our pde yields the following determining equations for
φ(x, t), u0(x, t), u1(x, t), V and C1 :

O(φ−7) : 2u0φx[(9c2
1H3 + 18c1)φ4

x + (6H3c1 + 6)u0φ
2
x +H3u

2
0] = 0 (29)

O(φ−6) : −10H1u0u1φ
3
x − 5H3u

2
0u1φx + 60c1u0φ

3
xφxx + 15c2

1H3u0xφ
4
x − 3c2

1H3u1φ
5
x

+10H1u
2
0φxφxx − 10H1u0u0xφ

2
x + 30c2

1H3u0φ
3
xφxx + 14c1H3u0u0xφ

2
x

+4c1H3u
2
0φxφxx − 10c1H3u0u1φ

3
x + 30c1u0xφ

4
x − 6c1u1φ

4
x + 14u0u0xφ

2
x

+4u2
0φxφxx − 10u0u1φ

3
x +H3u

2
0u0x = 0 (30)

O(φ−5) : H2
3u

2
0u1x − 6H4u0φ

3
x − 6u0φ

3
x(c1H3 − 2H1 + 1) + 3u0φ

3
x

+6H1u0φ
3
x(c1H3 − 2H1 + 1)− 4c1H

2
3u0u1φxφxx − 16H1H3u0u1φxφxx

+9c2
1H

2
3u0φxφ

2
xx + 4H3u

2
0xφx + 2H3u

2
1φ

3
x − 6H1H3u0xu1φ

2
x

+14H1H3u0u1xφ
2
x − 10c1H

2
3u0u1xφ

2
x − 6c1H

2
3u0xu1φ

2
x + 36c1H3u0xφ

2
xφxx

+12c1H3u0φ
2
xφxxx + 2H1H3u0u0xφxx − 4H3u0u1φxφxx − 6c2

1H
2
3u1φ

3
xφxx

+6c2
1H

2
3u0φ

2
xφxxx + 18c2

1H
2
3u0xφ

2
xφxx + 2c1H

2
3u0u0xφxx + 2H1H3u0u0xxφx

−12c1H3u1φ
3
xφxx + 2c1H

2
3u0u0xxφx + 18c1H3u0φxφ

2
xx + 2H1H3u

2
1φ

3
x

+4H2
3u0u

2
1φx + 2H3H4u

2
0φx − 6c1H3u1xφ

4
x − 3c2

1H
2
3u1xφ

4
x − 8H1H3u

2
0xφx

−10H3u0u1xφ
2
x + 2c1H

2
3u

2
1φ

3
x − 6H3u0xu1φ

2
x + 2H3u0xxφx + 4c1H

2
3u

2
0xφx

+6H4u0φ
3
x(c1H3 − 2H1 + 1) + 2H1H3u

2
0φxxx + 12c1H3u0xxφ

3
x

+6c2
1H

2
3u0xxφ

3
x − 2H2

3u0u0xu1 + 12H1H4u0φ
3
x + 2H3u0u0xφxx

+3u0φ
3
x(c1H3 − 2H1 + 1)2 − 6H1u0φ

3
x = 0 (31)

Upon solving the O(φ−7) and O(φ−6) equations for u0 and u1 respectively we find that

u0(x, t) = −3c1φ
2
x, u1(x, t) = 3c1φxx (32)

which lends itself nicely to a representation of the solution as u(x, t) = 3c1 log[φ(x, t)]xx.
Further with the choice V = 1 the choices for coefficients the remaining orders of φ are
identically satisfied. Now solving the system for φ given in the previous section we find that
φ(x, t) = c2 + c3e

x+Ct. Therefore we have the solution

u(x, t) =
3c1c2c3e

x+Ct

(c2 + c3ex+Ct)2
(33)
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which for the selection c2 = c3 reduces to the solution u(x, t) = 3c1
4 sech2

(
x
2 + Ct

2

)
The next example is similar to the first however in this case we don’t have a7 = 0 and we

will not force the u2 term to be the trivial solution. We thus consider the following example

ut +
10H1ξ(t)

F (
∫
η(t)dt+ x)

uuxxx +
2(3 + 2H1)ξ(t)

F (
∫
η(t)dt+ x)

uxuxx +

+
6H1 − 1

F (
∫
η(t)dt+ x)

u2ux +
10H4ξ(t)

F (
∫
η(t)dt+ x)

uux +
10H5ξ(t)

F (
∫
η(t)dt+ x)

uxxx +

+
4(3H1 + 2)ξ(t)2

5F (
∫
η(t)dt+ x)

uxxxxx −
(

1

ξ(t)

)′
F

(∫
η(t)dt+ x

)
u+

+

(
H6(t) +

ξ(t)2(c4
2(8H1 − 3)− 2500c1(H4 + 30c1H1 − 5c1))

5F (
∫
η(t)dt+ x)

)
ux = 0 (34)

where ξ(t) = H5/(10c1H1 − 10c1 +H4) and H1(t), H4(t), H5(t) and η(t) are arbitrary functions
of t and c1, c2 are arbitrary constants. As with our last example the leading order analysis yields
α = 2. Unlike our last example we will not force the u2 term to be 0 initially. The first orders
of φ which determine the ui are as follows :

O(φ−7) : −576(3H1 +2)ξ(t)2u0φ
5
x−2(6H1−1)u3

0φx−24H1u
2
0φ

3
x−24(3+2H1)ξ(t)u2

0φ
3
x = 0 (35)

O(φ−6) : 1440H1H
2
5φ

4
xu0x − 288H1H

2
5φ

5
xu1 + 600c2

1H
3
1u

2
0u0x − 1300c2

1H
2
1u

2
0u0x

+800c2
1H1u

2
0u0x + 6H1H

2
4u

2
0u0x + 500c2

1φxu
2
0u1 + 20c1H4u

2
0u0x + 5H2

4φxu
2
0u1

−840c1H5φ
2
xu0u0x + 84H4H5φ

2
xu0u0x + 600c1H5φ

3
xu0u1 − 60H4H5φ

3
xu0u1

−3000c2
1H

3
1φxu

2
0u1 + 6500c2

1H
2
1φxu

2
0u1 + 120c1H

2
1H4u

2
0u0x − 4000c2

1H1φxu
2
0u1

−140c1H1H4u
2
0u0x − 30H1H

2
4φxu

2
0u1 − 100c1H4φxu

2
0u1 − 192H2

5φ
5
xu1

−100c2
1u

2
0u0x −H2

4u
2
0u0x + 960H2

5φ
4
xu0x + 1920H2

5φ
3
xφxxu0

+2880H1H
2
5φ

3
xφxxu0 − 240c1H5φxφxxu

2
0 + 24H4H5φxφxxu

2
0

+1960c1H
2
1H5φxφxxu

2
0 − 1720c1H1H5φxφxxu

2
0 + 196H1H4H5φxφxxu

2
0

+2360c1H
2
1H5φ

2
xu0u0x − 1520c1H1H5φ

2
xu0u0x + 236H1H4H5φ

2
xu0u0x

−3400c1H
2
1H5φ

3
xu0u1 + 2800c1H1H5φ

3
xu0u1 − 340H1H4H5φ

3
xu0u1

−600c1H
2
1H4φxu

2
0u1 + 700c1H1H4φxu

2
0u1 = 0 (36)

and another equation at O(φ−5) which we omit for reasons of length.
Upon solving the O(φ−7), O(φ−6) and O(φ−5) equations for u0, u1 and u2 respectively we

find that

u0(x, t) = − 12H5φ
2
x

10c1H1 − 10c1 +H4
= −12ξ(t)φ2

x (37)

u1(x, t) =
12H5φxx

10c1H1 − 10c1 +H4
= 12ξ(t)φxx (38)

u2(x, t) = −(4φxφxxx − 50c1φ
2
x − 3φ2

xx)H5

(10c1H1 − 10c1 +H4)φ2
x

=
(4φxφxxx − 50c1φ

2
x − 3φ2

xx)ξ(t)

φ2
x

(39)

which similarly lends itself nicely to a representation of the solution as

u(x, t) = 12ξ(t)[log(φ(x, t))]xx + u2(x, t)
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Further, if we let C(x, t) = B(t) and once again V (x, t) = 1 the choices for coefficients reduce
the remaining orders of φ to an identically satisfied system. Solving the determining equations
for φ(x, t) we have that φ(x, t) = c2 + c3e

∫
V B(t)dt+V x. Therefore we have the solution

u(x, t) = −
ξ(t)

(
c2

2(V 2 − 50c1)− 10c2c3(V 2 + 10c1)e
∫
V B(t)dt+V x + c2

3(V 2 − 50c1)e2
∫
V B(t)dt+2V x

)
(
c2 + c3e

∫
V B(t)dt+V x

)2

(40)

5. Conclusions and Future Work
We have used a direct method to obtain very significantly extended Lax- or S-integrable families
of generalized KdV and MKdV equations with coefficients which may in general vary in both
space and time. Some solutions for the generalized inhomogeneous KdV equations have also
been presented here.

Future work will address the derivation of additional solutions by various methods, as well as
detailed investigations of other integrability properties of these novel integrable inhomogeneous
NLPDEs such as Backlund Transformations and conservation laws.
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