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Abstract. The Skyrme-Faddeev model admits exact analytical non localized solutions, which
describe magnetic domain wall solutions when multivalued singularities appear or, differently,
always regular periodic nonlinear waves, which may degenerate into linear spin waves or solitonic
structures. Here both classes of solutions are derived and discussed and a general discusssion
about the existence of integrable subsectors of the model is addressed.

1. Introduction
The present contribution is mainly based on the developments of the results reported in
the recent paper [1], where several reductions of the Skyrme-Faddeev model [2] were solved
implicitly or in terms of special functions. In particular we consider the 4-dimensional relativistic
(gµν = diag (+,−,−,−) ) Skyrme–Faddeev model [6] for the unimodular three vector φ ∈ S2
given by the Lagrangian density

L =
1

32π2

(
∂µφ · ∂µφ−

λ

4
(∂µφ× ∂νφ) · (∂µφ× ∂νφ)

)
− κ (1− φ · φ) , (1.1)

where λ > 0 is a scaling parameter, determining the breaking of the conformal symmetry, and κ
is a Lagrangian multiplier, implementing the constraint on φ. The considered reductions lead to
extended infinite energy solutions in the 3-dimensional space, which are rarely considered in the
current literature on the subject, that being focused on the hopfion solutions [2] - [13], mainly
by numerical integration of the equations of motion. Thus, there are at least three different
motivations to the present approach: i) find analytical solutions to the system by exploiting its
hidden symmetries, ii) give a suitable mathematical description of the of the extended phases
observed in experimentsin ferromagnets and multiferroincs [14, 15, 16, 17], iii) find a method in
order to extract as as we can from the general model special subsectors completely integrables.
Moreover, numerical investigations concerning the anelastic scattering of hopfions show the
excitation of wave-like modes disperding the energy, which are far to be studied. From our
view point, a strong connection with the d’Alembert-Eikonal system has been obtained. This
observation leads to find large classes of solutions of the Cauchy problem. Here special classes
are described and interpreted as magnetic domains for the considered model. In Sec. 3 we will
consider certain exact analytic periodic spin waves solutions for the Skyrme-Faddeev model,
given in terms of elliptic integrals of third kind, specifying their behavior in some particular
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limits. In general the obtained solutions are quasi-periodic, but periodic dispersive wave-train
solutions, one can show that the Lagrangian can be averaged by the Whitham method. This
provides a Lagrangian for a set of parameters, describing the modulation of periodic waves in
terms of a quasilinear system of partial derivatives of the first order. Finally, we remark that the
imposed constraints is similar to the restrictions imposed by [18] in order to select an integrable
sector of the general non integrable system.

2. Domain-Walls
First, let os observe that the geometric constraint φ · φ = 1 can be realized in several way, for
instance by resorting to the stereographic projection of the sphere on the complex plane, but
loosing some evident symmetries here it seems useful to introduce the polar representation

φ = (sinw cosu, sinw sinu, cosw) , (2.1)

where w and u are suitable functions on the variables
(
x0, . . . , x3

)
to be determined. The

Lagrangian (1.1) becomes

Lp =
1

32π2

{
wµw

µ + sin2w

[
uµu

µ − λ

2
(wµw

µuνu
ν − wµwνuµuν)

]}
, (2.2)

and the Euler–Lagrange equations read

∂µw
µ = 1

2 sin(2w)uνu
ν + λ

2 sinw uν ∂µ[sinw(wµuν − wνuµ)], (2.3)

wµu
µ sin(2w) + sin2w[∂µu

µ + λ
2wν∂µ(uµwν − uνwµ)] = 0. (2.4)

The first equation can be interpreted as a quadratic constraint among first and second
derivatives of the function u, while the second equation is a linear combination of first and second
derivatives of the function u. In both cases the coefficients contain trigonometric functions and
derivatives of w.

Such an asymmetry suggest to deal in different way u and w For instance, A first observation
comes from the assumption w = const, which drastically reduces a d’Alembert equation
constrained by the homogeneous Eikonal equations, i.e.

∂µu
µ = 0, uνu

ν = 0. (2.5)

This overdetermined system was investigated in many papers [19, 20] and for which the general
solution was given in the implicit form

G (u,Aµ (u)xµ, Bµ (u)xµ) = 0, AµA
µ = BµB

µ = AµB
µ = 0, (2.6)

with G, Aµ and Bµ arbitrary real regular functions. The process to provide explicit form
for u may suggest that multi-valued functions appear. In fact, for sake of simplicity, let us
impose Bµ ≡ 0 and restrict to two spacial dimensions coordinated by

(
x1, x2

)
. Then, under

the suitable assumptions of regularity of the function G, one can write the solution in the form
u = F

(
x0 − ni (u)i x

i
)
, where F and ni are differentiable functions, such that

∑2
i=1 n

2
i = 1.

Thus, setting n1 (u) = cos (f (u)), for a suitable function f , one can introduce the auxiliary

variable y = cos (f (u)− z), being z = arccos
(
x1

r

)
and r =

√
(x1)2 + (x2)2 . Thus the equation

defining u is reduced to

arccos y = f
(
F
(
x0 − ry

))
− z. (2.7)

For suitable bounded continuous on R functions f and F , the above equation admits continuous
solutions in

(
x0, x1, x2

)
variables, possibly multiple coincident or not. If F goes to finite value
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at infinity, asymptotic values, may depending on the direction, are taken by u. This value is
preserved in time evolution, while other localized structures, caustics or singularities, move at
constant velocity along the characteristics. Such a behavior suggests the existence of solutions
domain wall in the Skyrme-Faddeev model. However, such a reduction has few of interest, for
two reasons: i) asymptotics in time lead to the same boundary value and the solution becomes
uniform, ii) the energy density is vanishing everywhere. So one has to look to less drastic
reduction, for example imposing that

wµu
µ = 0, uνu

ν = α . (2.8)

Then, the system (2.4) reduces to the separable set of equations

∂µu
µ = 0, uνu

ν = α, (2.9)

wµu
µ = 0, ∂µw

µ =
α

2

sin(2w)

1− λα
2 sin2w

(1 +
λ

2
wµwµ), (2.10)

being the last one highly nonlinear for the w field, but depending on the general solution of the
d’Alembert-Eikonal system (2.9). For that one the general solution is given in the implicit form
by [20]

u = Aµ (τ)xµ +R1 (τ) , (2.11)

Bµ (τ)xµ +R2 (τ) = 0, (2.12)

AµA
µ = α, AµB

µ = A′µB
µ = BµB

µ = 0, (2.13)

where the function τ is implicitly defined by the (2.12), the real differentiable functions Aµ, Bµ
satisfy the constraints (2.13) and, finally, the function Ri are differentiable up to second order
at least.

If in (2.9) it results that α < 0, setting α = −η2 the solution can be put in the form

u = xkAk(τ) +A0(τ), t = xkBk(τ) +B0(τ), (2.14)

(Ai) = ηÂ (f (τ) , g (τ)))
(
Â

2
= 1

)
, (Bi) = B̂ = ±

ˆA× ˆA
′

| ˆA× ˆA
′
|
[f (τ) , g (τ))] (2.15)

where f (τ), g (τ) (the [. . .] in (2.15) indicate the dependency also on their first derivatives),
A0 (τ) and B0 (τ) are arbitrary differentiable functions. Thus, choosing them large classes of
solutions can be found for the d’Alembert-Eikonal system (2.9). To give some insight on it, one

may consider the simplest situation in which Â rotate uniformly, tracing a maximal circle on
the unit sphere embedded into an auxiliary 3-space. The circle axis is given by the constant B̂.
Then, accordingly with the properties of invertibility of B0 (τ), at least locally τ is a function

of the linear combination t− B̂ · x. Neglecting for sake of clarity the function A0 in (2.14), the
function u oscillates, increasing its amplitude like r. But the oscillations are strongly dependent
on the direction and, in particular, they move in the space according to the time dependency of
τ seen above. Moreover, similar static solutions exist. If B0 (τ) is not an injective continuous
function, caustics and singularities of the wave front may appear. We know that in general the
singularities of the wave fronts are classified by the Coxeter groups [21].

Similar considerations concern a different reduction, simply obtained from (2.4) by setting
to zero the coefficients of all functions of w. After some work one prove that the set of the
independent constraints reduces to the overdetermined quasilinear system of the first order in
(uµ, wµ) fields (we will name it the reduced Skyrme–Faddeev system)

∂µw
µ = 0, wµw

µ = −ε2, (2.16)

uµw
µ = 0, uν∂µ(wµuν − wνuµ) = 0, (2.17)
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where ε2 = 2
λ for notational clarity. Now the d’Alembert-Eikonal system (2.16) has the general

solution (2.11)-(2.13) after the change u→ w and α → −ε2. The first equation in (2.17) is the
orthogonality condition among the gradients of the two fields, and the second one is a quadratic
differential constraint among the derivatives of the function u. Actually it can be rewritten as two
divergence terms (namely ∂µ (uνu

νwµ) and ∂µ (uνw
νuµ)) balanced by a contribution of the form

(wµuν − wνuµ) ∂µuν . However, the second divergence is vanishing, because of the orthogonality
condition, while the balancing contribution is the trace of the product of an antisymmetric
tensor with a symmetric one, then it vanishes. Finally, recalling that w satisfies the d’Alembert
equation, the equation we considered can be concisely written as

aµw
µ = 0 with a = uνuν , (2.18)

in complete analogy with the first equation in (2.17).
Cross differentiation of those equations and systematic substitution of the x0-derivatives

w0 =
√
w2
m − ε2, u0 =

ukwk√
w2
m − ε2

, (2.19)

lead to a set of compatibility conditions. For the d’Alembert-Eikonal equations it is well known
[20] that such a set is finite and any further compatibility condition is satisfied only by the
Monge-Ampére equation Det [wij ] = 0,. On the other hand, the compatibility for the remaining
equations leads to the two quadratic constraints

(w2
s − ε2)umukwkm + (ukwk)

2wmm = 2uswsumwkwkm, (2.20)

4ukwkuswsp(wmwpm − wpwmm) + 2(uswmwsm)2 + (2.21)

(usws)
2(wmmwpp − w2

pm) = 2(w2
p − ε2)(uswsm)2. (2.22)

Such constraints can be simplified and possibly solved, if one can find a first order linear system
of the form

u0 = Au1, u2 = Bu1, u3 = Cu1, (2.23)

where the functions A, B, C depend on first and second order derivative of field variable w
only. This formulation is similar to look at solutions of the Skyrme-Faddeev system (2.4) by
the method of the hydrodynamic reductions [22, 23], involving a finite number of Riemann
invariants. This can be certainty done in two space dimensions, where the equations of the form
(2.23)

u0 =
w1w11 + w2w12

w0w11
u1, u2 =

w12

w11
u1, (2.24)

allow to identically satisfy the constraints (2.20) - (2.22). Moreover, it is easy to prove also that
a solution of the system (2.24) is given by

u = F [w1, w2] (2.25)

where F is an arbitrary real differentiable function of its arguments, depending on the initial
data. Finally, by direct computation the equation (2.18) is identically satisfied, because of the
vanishing of the quantity a. Thus, we have the general solution for the reduced Skyrme-Faddeev
system in 2 space dimensions in terms of the four arbitrary functions involved in the solution of
the d’Alembert-Eikonal system.

In three space dimensions, a similar analysis is much more complicated. In fact, substitution
of (2.23) into (2.20) and (2.22) one is lead to an algebraic system of 4th degree. Thus, in principle
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the functions A, B, C in (2.23) can be explicitly determined, but their long expressions are
intractable. On the other hand, from the orthogonality condition and (2.19), it is easy to prove
that a class of solutions for u is given by u = F [w1, w2, w3] , being F an arbitrary differentiable
real function, constrained by the second equation in (2.17), which is not longer an identity as in
2-dimensions.

A direct substitution of a general solution for w, in the form (2.14)-(2.15), into the
orthogonality condition (2.17-i) leads to the linear PDE

[Xm(B′m(τ)Ap(τ)−A′m(τ)Bp(τ)) +B′0(τ)Ap(τ)−A′0(τ)Bp(τ)]uXp = 0, (2.26)

having used the coordinate transformation

(xmB
′
m(τ) +B′0(τ))dτ = dt−Bk(τ)dxk, Xk = xk. (2.27)

By the methods of characteristics it is equivalent to a 3 ODE system, for the unknown Xk (s),
being s an auxiliary variable. Depending the coefficient only on τ , one has a constant coefficient
linear system nilpotent of order 2, because of the peculiar symmetry of the constraints (2.14)-
(2.15). Thus, the solution is linear in s, from which one can extract two integrals of motion,
in terms of which express the solution of (2.26). Then a general solution for the complete
system of equations is determined by a sole function of a single variable only and the formula
u = F [w1, w2, w3] , is certainly redundant.

Finally, Let us notice that the eikonal - like condition was used in [18] to reduce the Skyrme-
Faddeev model.

3. Waves
Now, we look at the invariant solutions of any 2-dimensional sub-algebra of the translational
symmetries of the Skyrme-Faddeev model. Actually, by using the adjoint action of the space-
time rotational subgroup, only 3 parameters will be left arbitrary. The invariant reduction is of
the form

w = Θ [θ] , u = Φ [θ] + θ̃, where θ = αµx
µ, θ̃ = βµx

µ (3.1)

in which one distinguishes θ as the phase from the pseudo-phase θ̃. Thus the equations of motion
reduce to the announced 3-parametric family[

2B3 −
λ

4
B sin2 Θ

]
Θθθ = sin 2Θ

(
λ

8
B Θ2

θ +B3Φ
2
θ +B2Φθ +B1

)
(3.2)

2B3 sin2 Θ Φθθ + Θθ sin 2Θ (2B3Φθ +B2) = 0, (3.3)

where B1 = −βµβµ, B2 = −2αµβ
µ B3 = −αµαµ and B = B2

2 −4B1B3. These equations provide
trigonometric plane waves, for instance by setting B3 = 0 and B2 6= 0.

To obtain the general situation, one uses the expression of the energy-stress tensor Tµν =(
wν∂wµ + uν∂uµ

)
Lp − gµνLp and build the conserved quantities Eµ = Tµναν , given by

E0 =
−1

32π2

{
B3α0Θ

2
θ + sin2 Θ

[
2~α · ~β β0 +

(
B1 − 2~β2

)
α0 (3.4)

+B3 (2β0 + α0Φθ) Φθ −
λB
8
α0Θ

2
θ

]}
, (3.5)

E i =
−1

32π2

{
B3αiΘ

2
θ + sin2 Θ

[
B2βi −B1αi +B3 (2βi + αiΦθ) Φθ −

λB
8
αiΘ

2
θ

]}
. (3.6)
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These equations can be used to find an expression of Θ2
θ and Φθ. Precisely, assuming B3 6= 0

one finds

Θ2
θ =

8B3
(
B1 sin2 Θ + U3

)
− 2B2

2

(
sin2 Θ + U2

2 csc2 Θ
)

B3
(
8B3 − λB sin2 Θ

) (3.7)

Φθ = −B2
(
U2 csc2(Θ) + 1

)
2B3

, (3.8)

where the Ui’s are two constants completely defining the quantities in (3.5) by the expressions

Eµ = U3αµ + B2U2
2

(
B2
B3
αµ − 2βµ

)
. The equation (3.7) can be set in algebraic form by the

transformation
Θ = arcsin

√
ψ, (3.9)

yielding the equation

ψ2
θ =

64(ψ − 1) (ψ −A1) (ψ −A2)

λ2Bψ1 (ψ1 − ψ)
, (0 ≤ ψ ≤ 1) (3.10)

where one has defined the constants A1,2 =
2B3U3±

√
4B2

3U
2
3−BU

2
2

B and ψ1 = 8B3
λB , related 1-1 to

the values of the integrals of motion. Assuming for instance 0 < A1 < A2 < 1, by a continuous
variation of ψ1 one obtains that only one oscillating solution exists for ψ, bounded between two
of the three zeros of the numerator in (3.10), even if real unbounded solution may appear or
complex ones. Analytically, equation (3.10) can be integrated in terms of incomplete elliptic
integrals of the third kind. Precisely, by introducing a parametric variable Z one obtains the
parametric form

θ (ψ) = θ0 +
1

4

√
Bλ2ψ1 (ψ1 −A1)

2

(A1 − 1) (A2 − ψ1)
Π

[
A1 −A2

ψ1 −A2
;Z|(ψ1 − 1) (A1 −A2)

(A1 − 1) (ψ1 −A2)

]
,

ψ = −A2ψ1 sin2 Z +A1
(
ψ1 cos2 Z −A2

)
A1 sin2 Z +A2 cos2 Z + ψ1

(3.11)

which can be expressed in terms of Weierstrass P function. Furthermore, from (3.8) the function
Φ can be expressed again in terms of incomplete elliptic integrals, namely

Φ = −B2U2

2B3

[∫
dθ

ψ (θ)
+ θ

]
+ Φ0 = (3.12)

− s1
2ψ1

[√
2ψ1 (A1 − ψ1) 2 (B1λψ1 + 2)

(A1 − 1) (A2 − ψ1)
Π

(
A2 −A1

A2 − ψ1
;Z

∣∣∣∣(A1 −A2) (ψ1 − 1)

(A1 − 1) (ψ1 −A2)

)

+2s2

√
A2ψ1 (A1 − ψ1) 2

A1 (A1 − 1) (A2 − ψ1)
Π

(
(A1 −A2)ψ1

A1 (ψ1 −A2)
;Z

∣∣∣∣(A1 −A2) (ψ1 − 1)

(A1 − 1) (ψ1 −A2)

)]
,

where s1 = sign B2, s2 = sign U2.
This general solution leads to three different linear harmonic branches in the limit of ψ1 is

approaching A1, A2 and 1 respectively. For instance, one has

ψ1 → 1 : ψ → 1

2

(
(A1 −A2) cos

(
8√
Bλ

θ

)
+A1 +A2

)
, (3.13)

from which the dispersion relation for such waves can be explicitly derived. The wavelength is
affected by the presence of the pseudo-phase by the factor in front of θ. At the opposite, one can
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notice from the general solution above that the length-wave can be made very large when A2 → 1
and ψ1 → ∞. In this limit the solution can be expressed in terms of elementary hyperbolic
functions. A similar situation occurs when A1 = A2, then the the elliptic module is 0 and the
solutions are given in terms of trigonometric functions. Thus one can conjecture that varying
in a suitable way all the parameters, a set of periodic solutions can be found. This suggests to
consider slowly deformations of them. The lowest order of modulation approximation is found by
substituting the multi-parametric family of periodic solutions (3.10) (see also (3.7) and (3.8)) into
the Skyrme-Faddeev Lagrangian (see (1.1) and (2.2)), introducing an averaged Lagrangian, say

L(γ, ω, ~β,~k), depending on the slowly changing parameters as new dynamic variables γ, ω, ~β,~k,
which correspond to the derivatives with respect to space-time variables of phase θ and pseudo-
phase θ̃, now not necessarily linear as in (3.1). It means that ω = −θX0 , ki = θXi and
γ = −θ̃X0 , βi = θ̃Xi , where X0, X1, X2, X3 are the so called “slow” variables in comparison
with “fast” variables x0, x1, x2, x3 (see detail in [24]).

Thus, one immediately derives the four-dimensional quasilinear system (below we use
∂k ≡ ∂Xk)

∂0Lω = ∂iLki , ∂0Lγ = ∂iLβi , (3.14)

with the compatibility conditions

∂0k
1 + ∂iω = 0, , ∂jk

i = ∂ik
j i 6= j, (3.15)

∂0β
i + ∂iγ = 0, , ∂jβ

i = ∂iβ
j i 6= j.

After the substitution of the family of periodic solutions (3.7) and (3.8) into the Lagrangian
density (2.2), one obtains

L̂p = sin2(Θ)

(
−1

2
λ

(
B2

2

4
−B1B3

)
Θ2
θ +B3Φ

2
θ +B2Φθ +B1

)
+B3Θ

2
θ, (3.16)

which is a function only on θ. Thus, performing an integration over a finite space-like region,
contributions from θ-independent coordinates are just time-independent finite multiplicative
factors. Then, on a period of the wave, one leads to the Lagrangian

L ≡ 1

2π

∮
L̂p dθ, (3.17)

which, generalizing the standard Whitham approach, is supplemented by the introduction of
two natural normalizations (or constraints)∮

dθ = 2π, < Φθ >=

∮
Φdθ = 2πm, (3.18)

where the integer “m” is the number of rotations of the vector ~φ around a value determined
by a given pseudo-phase θ̃. This situation is very similar to to the spin wave configurations
called cyclon and extra-cyclon in multiferroic materials ([17]). Then the corresponding averaged
Lagrangian is

L =

(
B1 −

B2
2

4B3

)A1 +A2 +W

√
λ

2
B3

+
B2 + 2mB3

2B3

√
A1A2(B2

2 − 4B1B3), (3.19)

where we introduced the function

W =
1

2π

∮ √
(ψ −A1) (ψ −A2) (ψ − ψ1)

1− ψ
dψ

ψ
. (3.20)

One can immediately check that two equations LA1 = 0 and LA2 = 0 (see [24]) coincide with
normalizations (3.18), while the Euler–Lagrange equations lead to four dimensional quasilinear
system of the first order (3.15).
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4. Conclusions
We have found several reductions of the Skyrme-Faddeev model, which can be solved or implicitly
or via special functions. We have shown the strong connection with the d’Alembert-Eikonal
system, which allows to find large classes of solutions. Even in the more complicated system
(2.16)-(2.18), we found large classes of solution in terms of two arbitrary functions. Finally, we
have shown that the overdetermined system for the field u can be formulated as a first order
system of linear pde’s, which can be solved by the “method of hydrodynamic reductions ”.
However, the analysis of the special constraint 2.18) deserves several technical complexities and
for this only particular solutions are given. Only, we remark that the constraint is a further
restriction on the subsector of the solution space described in [18]. In Sec. 3 we have found
exact analytic periodic spin waves for the Skyrme-Faddeev model, determined in terms of elliptic
integrals of third kind. Assuming that there exist such periodic dispersive wave-train solutions,
we have shown that the Lagrangian can be averaged by the Whitham method. This provides a
Lagrangian for a set of parameters, describing the modulation of periodic waves in terms of a
quasilinear system of partial derivatives of the first order
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