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Abstract. Deterministic dynamical system which has an asymptotical stable equilibrium is
considered under persistent perturbation by white noise. It is well known that if the perturbation
does not vanish in the equilibrium position then there is not Lyapunov’s stability. The
trajectories of the perturbed system diverge from the equilibrium to arbitrarily large distances
with probability 1 in finite time. New concept of stability on a large time interval is discussed.
The length of interval agrees the reciprocal quantity of the perturbation parameter. The measure
of stability is the expectation of the square distance from the trajectory till the equilibrium
position. The method of parabolic equation is applied to both estimate the expectation and
prove such stability. The main breakthrough is the barrier function derived for the parabolic
equation. The barrier is constructed by using the Lyapunov function of the unperturbed system.

1. Statement of the problem
Let the deterministic system be

dy

dT
= a(y, T ), y ∈ Rn, T > 0. (1)

The point y = 0 is equilibrium, which means a(0, T ) ≡ 0. Let the perturbed system be the
stochastic Ito equation [1, 2, 3]

dy = a(y, T )dT + µB(y, T ) dw(T ), T > 0; y|T=0 = x; 0 < µ2 � 1. (2)

Here w(T ) accounts for the standard Brownian motion in Rn and B(y, T ) is a matrix n×n with
the property B(0, T ) 6≡ 0. The solution y = yµ(T ; x) is a stochastic process in Rn depending
on both the initial point x and a small parameter µ. The solution depends on the matrix B as
well.

Let the equilibrium position y = 0 of the system (1) be asymptotically stable in Lyapunov
sense. Consider the problem of stability under white noise as follows: does the trajectory
y = yµ(T ; x) remain near equilibrium, if the perturbations µ, |x| are small and the matrix
belongs a fixed ball ||B||<M?

It is well known, if B(0, T ) 6≡ 0, that there is not any Lyapunov type stability with respect
to white noise. Almost all trajectories of the perturbed system diverge from the equilibrium to
arbitrarily large distances in finite time. The concept of stability must be modified in appropriate
way. The similar problem for autonomous systems was considered in [1], see also [4, 5, 6, 7]. We
solve the problem for nonautonomous systems by method of parabolic equation. This approach
and the obtained results are different from [1].
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2. Definition of stability
The measure of stability is the expectation of the square perturbed solution, i.e.

E[
(
yµ(T ; x)

)2
] = uµ(x, T ).

It is a function on x, T . In the definition we follow Khasminskii [8], Katc and Krasovskii [9, 10].

Definition 1. Equilibrium y = 0 of the deterministic system (1) is weak stable with respect
to white noise under the given estimates δ = δ(ε), ∆ = ∆(ε) on an asymptotically large
interval uniformly for B from the set B, if there exists T0 > 0, so that for any ε > 0

the expectation along perturbed trajectory is small: E[
(
yµ(T ; x)

)2
] < ε uniformly for all:

|x| < δ(ε), |µ| < ∆(ε), 0 < T < T0µ
−2, B ∈ B.

This definition does not follow the usual mathematical approach [8] by reason of the finite
time interval. But it is very useful for physics due to the given estimates and the large time
interval under small µ, [9], p.3. We use the expectation instead of probability in the definition.
It is not an essential difference due to Chebyshev’s inequality [8], p.14, [2], p.65.

3. Reduction to the parabolic equation
Let f(x) be a random function in Rn. The expectation E[f(x)] is thus a function on x. Consider
the parabolic (Kolmogorov) equation

∂su+ a(x, s)∂xu+ µ2
n∑

i,j=1

αi,j(x, s)∂xi∂xju = 0, x ∈ Rn, 0 ≤ s < T

with the specific final condition
u|s=T = E[f(x)].

Here the matrix A = {αi,j} is determined by 2A = BB∗. The equations may be reduced to
the initial problem by change of time: s = T − t. After that the problem takes the form with
specific dependence on T, t:

LT,µu ≡ ∂tu− a(x, T − t)∂xu− µ2
n∑

i,j=1

αi,j(x, T − t)∂xi∂xju = 0, x ∈ Rn, 0 < t ≤ T ;

u(x, t;T, µ)|t=0 = E[f(x)], x ∈ Rn.

(3)

Connection with the solution yµ(T ; x) of the stochastic equation is given by the formula [2, 3]

u(x, t;T, µ)|t=T = E[f(yµ(T ; x)].

In the special case, when f(y) = |y|2, the solution of the parabolic problem is taken on the upper

boundary: u(x, T ;T, µ) = E[
(
yµ(T ; x)

)2
] gives the expectation of the quadrate distance from

the random trajectory y = yµ(T ; x) till the point y = 0. In such interpretation the function
u(x, T ;T, µ) may be used as a measure of drift of the perturbed trajectory yµ(T ; x) from zero.
In the case, when the point y = 0 is the equilibrium position of the unperturbed system (1), the
magnitude of the function u(x, T ;T, µ) as x, µ→ 0 features stability of equilibrium under white
noise perturbation.
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4. Barrier function
The prove-out of stability is so reduced to estimate the solution u(x, t;T, µ) of the parabolic
equation near the point x = 0. Desirable estimate must be uniform with respect to the parameter
T on a long interval: T ∈ (0,O(µ−2)), µ → 0. We construct a barrier function in order to
obtain an appropriate estimate.

Definition 2. Barrier for the equation (3) is the function W (x, t;T, µ), which possesses
continues derivatives involved in differential operator LT,µ from (3), and the value of the operator
is nonnegative LT,µW (x, t;T, µ) ≥ 0 in the layer DT = {x ∈ Rn, 0 < t ≤ T}.

Application of barrier function is based on the maximum principle which says: any solution of
the equation (3), which is majorized by barrier at the initial moment u(x, t)|t=0 ≤W (x, 0;T, µ)),
will be majorized at subsequent moments u(x, t) ≤W (x, t;T, µ)), 0 < t ≤ T (see [11], p.14). To
construct an appropriate barrier we use a Lyapunov function of the unperturbed system (1).

5. Lyapunov function
Consider the unperturbed system (1). Remind the concept of Lyapunov function [9].

Definition 3. A function U(x, T ) is called a Lyapunov function for (1) at x = 0 if exists a
cylinder Dr = {(x, T ) : |x| < r, T ≥ 0} such that 1) U(x, T ) is defined, continuous, and
differentiable in Dr; 2) U(x) > 0 if x 6= 0, U(0) = 0, and 3)

[
∂T + a(x, T )∂x

]
U(x, T ) < 0 in

Dr.
If the system (1) possesses a Lyapunov function of such type, then x = 0 is asymptotically

stable. Moreover the equilibrium is stable with respect to a persistent smooth deterministic
perturbation [9]. A specific of the problem under consideration is that the white noise is not
deterministic and the perturbation is not smooth. The perturbed system (2) is not a differential
equation in ordinary sense and there is not Lyapunov’s stability if B(0, T ) 6≡ 0. The trajectories
of the stochastic system (2) diverge from the origin to arbitrarily large distances with probability
1 in finite time [1, 2]. But if the diffusion coefficient µ is small then many of trajectories stay near
equilibrium for long times. We refer to this property as stability on large interval. The proof of
such stability is derived from estimate of the solution of the parabolic equation by means of an
appropriate barrier.

Lyapunov function is applied to construct such barrier. The reason is as follows. Let U(x, T )
be a Lyapunov function for (1). Consider the function V (x, t;T ) = U(x, T − t), 0 ≤ t ≤ T .
Then for two terms of the parabolic operator the inequality[

∂t − a(x, T − t)∂x
]
V (x, t, T ) > 0

takes place and this suggests to use V (x, t;T ) in the barrier of the equation (3).
There are two obstacle in this way. The first is the diffusion term with a small factor µ2 in

the parabolic operator which gives a negative addend in LT,µV . The second is the local property
of the Lyapunov function while the barrier function must be global. In order to overcome these
difficulties we specify the system under consideration.

6. Conditions
Principal restrictions, which are imposed on the differential equations (1), are described by
means of conditions on the Lyapunov function U(x, T ). The first part of the conditions has
a local nature (in the cylinder Dr) and they are conventional in case of asymptotical stable
equilibrium:

∂tU − a(x, T )∂xU ≥ γU, (4)

|x|2≤U(x, T )≤M0|x|2, |∂xU |2 ≤M1U, (5)
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n∑
i,j=1

ai,j(x, T )∂xi∂xjU≤M2; (x, T )∈Dr; γ,Mk = const > 0. (6)

The local inequality (4) is a fundamental property. In general case there is not any Lyapunov
function with global property (4). In what follows we use a function which is given in the whole
half-space D = {x ∈ Rn, T ≥ 0} while the condition (4) holds in the subdomain Dr. One
can guess that the local Lyapunov function with properties (4)-(6) may be continued in the
wide domain D without (4). The second part of the conditions describes the properties of such
continuation. They are easily verified if the Lyapunov function is a quadratic form:

|∂xU |2 ≤M1U, LT,µU ≥ −M3U, x, t ∈ D \Dr, M3 = const > 0. (7)

7. Construction of the barrier function
The barrier function is described by different formulas in different subregions of the layer
DT = {x ∈ Rn, 0 < t ≤ T}. It is convenient to take the inner subregion delimited by a
level surface of the Lyapunov function

DTr = {(x, t) ∈ DT : U(x, T − t) < r2}, r = const > o.

The outer subregion is the complement DT \ DTr . Under condition (5) the boundary ∂DTr is
localized in the cylinder layer {r/

√
M0 ≤ |x| ≤ r, T > 0}.

The first part of the barrier V0(x, t;T, µ) is determined by formula:

V0(x, t;T, µ) = U(x, T − t) exp(−α0t) +
µ2M2

α0
[1− exp(−α0t)], α0 = const > 0.

If we take α0 ≤ γ, then under conditions (4),(5) the barrier property LT,µV0(x, t;T, µ) ≥ 0 holds
in the subregion DTr .

If r =∞ occurs (which means that U(x, T ) is a global Lyapunov function), then the function
V0(x, t;T, µ) is a desirable barrier in DT . This case corresponds to [8], p.249.

In general case there is not any global Lyapunov function. It means r < ∞ and the
barrier property for the function V0(x, t;T, µ) can violate for large |x| > r. Then we add
the exponentially growing function

V2(x, t;T, µ) = P (U) exp(αt), U = U(x, T − t), (x, t) ∈ DT \ DTρ , 0 < ρ < r.

The factor P (U) is determined by the formulas:

P (U) = v + µ2
(
m− λ v

µ2 + ν v

)
, v = [U − ρ2χ(U)]

γ

M1
; α,m, λ, ν = const > 0.

Here the function χ(U) ∈ C∞(R) is a smooth steady decreasing patch function with property:

χ(U) ≡ 1, U ≤ ρ2; χ(U) ≡ 0, U ≥ r2.

In order to avoid exponentially grows in the neighborhood of the point x = 0, the second
part of the barrier is continued in DTρ by the function

V1(x, t;T, µ) = mµ2 exp(αt+ v/µ2), (x, t) ∈ DT
ρ .

Since the function v = [U(x, t;T ) − ρ2]γ/M1 < 0 is negative in DTρ , hence the V1(x, t;T, µ) is

exponentially small as µ→ 0. In the more narrow domain, where U(x, t;T ) < ρ2/2, the estimate
V1(x, t;T, µ) = O(µ2) is uniform with (x, t) ∈ DTρ under ∀T ≤ O(µ−2). The last property is the
main purpose of the construction.
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Theorem 1. Let the Lyapunov function U(x, T ) for the equation (1) enjoy the properties (4)-
(7). Then for all sufficiently small |µ| < µ0 there is a barrier function W (x, t;T, µ) for the
equation (3), which is expressed by the formula

W = V0(x, t;T, µ) +


V1(x, t;T, µ), (x, t) ∈ DTρ ,

V2(x, t;T, µ), (x, t) ∈ DT \ DTρ
(8)

under appropriate constants α0, α,m, λ, ν, µ0 which are not depending on the parameters µ, T .
Proof. The proof of the theorem consists in the fitting of the barrier parameters

α0, α,m, λ, ν, µ0. There are two requirements which must be satisfied. The first corresponds
to smoothness of the function W (x, t;T, µ) on the matching surface ∂DTρ where v = 0 and the

second is the barrier property LT,µW ≥ 0 in DT .
The relations λ = 1 − m, ν = m/2(1−m), 0 < m < 1 provide a sufficient smooth

W ∈ C2(D
T ). The value m is determined in what follows.

If we take into account the conditions (4),(5), then the estimates

LT,µV0 ≥ 0, LT,µV1 ≥ 0

in the inner domain DTρ is derived1 under appropriate choice of parameters: α0 ≤ γ, α ≥
γM2/M1. Hence the barrier property is proved in the inner domain DTρ .

In the outer domain DT \ DTρ the second part of the barrier is taken. It gives

LT,µV2 =
[
αP (U) +

(
∂tU − a ∂xU

)
P ′(U)−

−µ2
n∑

i,j=1

ai,j(x, t;T )
[
P ′(U)∂xi∂xjU + P ′′(U)∂xiU∂xjU

]]
exp(αt) + qV2.

In the far subregion DT \ DTr the condition (7) is applied. Here v ≡ U , and the leading term
of the expression LT,µV2 is as follows: αP (U) exp(αt). Since

P (U) = U + µ2
(
m− λU

µ2 + ν U

)
≥ U + (m− λ/ν) = U + µ2(4m−m2 − 2)/m,

then the value m is chosen between root of the quadratic polynomial 4m−m2−2 under condition
m < 1. It means 2−

√
2 < m < 1. Under this m we have 4m−m2− 2 > 0. Hence the first term

in the expression LT,µV2 is minorized as follows

αP (U) exp(αt) ≥ αU exp(αt).

Due to (7) all remainder terms in the expression

LT,µW = LT,µV0 + LT,µV2, (x, t) ∈ DT \ DTr .

are minorized by −M̃U exp(αt) with a constant M̃ > 0 which is not depending on µ, T . Hence

the choice α ≥ M̃ provides the inequality LT,µV ≥ 0 in the domain DT \ DTr .

In the intermediate domain DTr \ DTρ the properties v > 0 and χ′(U) ≤ 0 are used. Due to
them the inequalities:

P (U) = v − µ2 λv

µ2 + νv
+mµ2 ≥ (1− λ)v +mµ2 = m (v + µ2) > 0,

1 The inequality LT,µV0 ≥ 0 takes place in the larger domain DTr .
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P ′(U) =
[
1− µ4λ

(µ2 + νv)2

](
1− χ′(U)

)
≥ 1− λ = m

are derived. Since in this domain both the inequalities ρ2 < U(x, t;T ) < r2 and the condition
(4) take place, hence(

∂tU − a∂xU
)
P ′(U) ≥ γmρ2 = const > 0, (x, t) ∈ DT

r \ DTρ .

Due to this inequality and conditions (5), (6) the value LT,µV2 ≥ 0 turns out to be nonnegative
for all sufficiently small |µ| < µ0. In this step the boundary of the parameter µ0 is chosen.
Remind that LT,µV0 ≥ 0 in the domain DTr . Hence

LT,µW = LT,µV0 + LT,µV2 ≥ 0, (x, t) ∈ DT
r \ DTρ .

So the barrier property is proved in the whole domain DT .

Corollary 1. If there exists the solution of the problem (3) with initial data E[|x|2], then it is
majorized by the barrier constructed above:

0 ≤ u(x, t;T, µ) ≤W (x, t;T, µ), 0 < t < T, ∀T > 0, |µ| ≤ µ0.

Proof. The property obtained above

V0|t=0 = U |t=0, V1|t=0 > 0, V2|t=0 = P (U)|t=0 ≥ 0

provides W |t=0 ≥ U |t=0 ≥ |x|2. Then the desired estimate follows from maximum principle [11].
Note the same barrier is suitable for a set of equations (3) with different matrices A = {ai,j},

under fixed constants M2,M3 in the conditions (6),(7).

8. Stability
Now we came back to the problem of stability with respect to white noise perturbation. In order
to discuss stability one has to be sure that the perturbed equation (2) has a global solution i.e.
the solution exists on the infinite interval T ∈ [0,∞). To ensure this property we have to require
additional restrictions on the coefficients. In the most simple approach it is enough to demand
a bounded grows of the coefficients with y at infinity [8, 3]:

|a(y, T )| ≤ const · (1 + |y|), ∀y ∈ Rn, T > 0, (9)

||B(y, T )|| =def max
i,j
|bi,j(x, t;T )| ≤M · (1 + |y|), ∀y ∈ Rn, T > 0. (10)

Moreover in view of application of the parabolic equation we impose an additional condition:
a(y, T ), B(y, T ) ∈ C2,0(D). It ensures smoothness of the expectation E[(yµ(T ; x)2] with respect
to x on a random trajectory yµ(T ; x), [12]. Let the derivatives ∂yB(y, T ), ∂2yB(y, T ) satisfy the
conditions (9), (10) as well. To identify a set of matrices of that type we introduce the ball in
the linear space Mn of matrix-fuctions:

S2,0
M = {B(y, T ) ∈Mn : max

0≤k≤2
sup
y,T
||(1 + |y|)−1∂kyB(y, T )|| ≤M}. (11)
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Theorem 2. Let the deterministic system (1) with the smooth coefficient a(y, T ) ∈ C2,0(D)
under condition (9) have the Lyapunov function with the properties (4)-(7). Then for each
M > 0 there exists δM ,∆M > 0 such that the equilibrium y = 0 is weak stable with
respect to white noise under given estimates δ(ε) = δM

√
ε, ∆(ε) = δM

√
ε on a large interval

T ∈ (0,O(µ−2)) uniformly with matrices B(y, T ) from the ball S2,0
M .

Proof. The expectation E[(yµ(T ; x)2] along the random trajectory is a function on (x, T ).
Due to the condition (11) this function is a solution of the parabolic problem (3) taken on the
upper boundary

E[
(
yµ(T ; x)

)2
] = u(x, t;T, µ)|t=T .

Hence it is majorized by barrier constructed above. Due to the properties of the barrier the
expectation has the estimate:

E[
(
yµ(T ; x)

)2
] ≤M0|x|2 + µ2

[
M3/α0 +m

]
. (12)

From here the property of weak stability follows: E[
(
yµ(T ; x)

)2
] < ε under |x| < δ(ε) =√

ε/2M0, |µ|<∆(ε)=
√
ε/2
[
M3/α0 +m

]
, 0<T ≤R2/4αµ2.

9. Conclusion
Stability of equilibrium with respect to white noise perturbation on a long time interval was
proved in this paper. The length of the interval µ−2 corresponds to reciprocal quantity of the
noise intensity µ. There is the hypothesis of exponentially large interval O

(
exp(Sµ−2)

)
, µ →

0, S = const > 0. This conjecture is derived by analogy the formula for the first passage time,
which is known in the case of autonomous systems [1]; the nonautonomous systems were not
considered. In the approach discussed above the hypothesis is reduced to find an appropriate
barrier for the parabolic equation (3).
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