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Abstract. We use Riemann-Hilbert Problems with canonical normalization to develop
technique for constructing families of commuting operators. As a result we are able to derive
new hierarchies of integrable nonlinear evolution equations.

1. Introduction
Let Γ be a contour in the complex λ-plane splitting C into two parts C ≡ Γ+ ∪ Γ−. By
multiplicative Riemann-Hilbert problem (RHP)[4, 18] we mean the problem of constructing two
functions ξ+(λ) and ξ−(λ) analytic for λ ∈ Γ+ and λ ∈ Γ− respectively such that:

ξ+(λ) = ξ−(λ)G(λ), for λ ∈ Γ. (1)

If the functions ξ±(λ) are scalar and have no zeroes in their regions of analyticity we can solve
the multiplicative RHP by the Plemelj-Sokhotzky formulae [4, 18].

We will consider more general and special RHP for functions ξ±(~x, t, λ) taking values in a
simple Lie group G with simple Lie algebra g.

Let us outline the special properties of our RHP. First, as contour Γ we will choose either the
real axis R, or a set of straight lines intersecting at the origin of C. Second, we will assume that
the solutions and the sewing function depend on two or more auxiliary variables one of which we
will call the time t and the others ~x = (x1, . . . , xp)

T will be spatial variables. It is natural that
their number p is smaller than the rank of the algebra r = rank g. The third special property is
that we will specify explicitly the dependence of the sewing function G(~x, t, λ) by:

i
∂G

∂t
− λ[K,G(~x, t, λ)] = 0, i

∂G

∂xs
− λ[Js, G(~x, t, λ)] = 0, λ ∈ Γ, (2)

where K and Js belong to the Cartan subalgebra h ∈ g.
We shall say that the functions ξ±(λ) are regular solution of the multiplicative RHP if:

(i) on the contour Γ they satisfy the equation:

ξ+(~x, t, λ) = ξ−(~x, t, λ)G(~x, t, λ), λ ∈ Γ; (3)
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(ii) the functions ξ±(λ) have no singularities or degeneracies for λ ∈ C\Γ;

The RHP (3) will have unique solution only after imposing a normalization condition. This
in our case is the canonical normalization condition:

lim
λ→∞

ξ±(~x, t, λ) = 11. (4)

In what follows we will start with an RHP whose sewing functions have special dependence
on the auxiliary variables t and xs and will demonstrate that their solutions are simultaneous
fundamental analytic solutions to a set of commuting operators M , Ls. In fact for the simplest
nontrivial case when Js, K are real and Γ ≡ R this has been known for long time [21, 22, 6].
However the RHP was used just for deriving the soliton solutions through the Zakharov-Shabat
dressing method [21, 22], see also [14, 10].

The family of operators M , Ls commute provided the first nontrivial coefficient Q1(~x, t) in
the asymptotic expansion of ξ±(~x, t, λ) (see eq. (6)) satisfies a certain set of nonlinear evolution
equations (NLEE). We will demonstrate on several nontrivial examples that this method allows
one to derive new types of integrable interactions. Thus we show that the formal approach of
Gel’fand and Dickey [3] can be made more precise.

In Section 2 we outline the main idea of constructing the families of commuting operators
[7, 8]. The next Section 3 contains several new examples of N -wave type interactions extending
the ones found in [12] and their reductions [11, 10, 9]. The last Section contains discussion and
conclusions.

2. RHP with canonical normalization
2.1. RHP and Generalized Zakharov-Shabat operators
Consider the simplest nontrivial RHP when Γ ≡ R and the dependence of G(~x, t, λ) is provided
by eq. (2) with real K and Js ∈ h ⊂ g.

Remark 1. With this choice of K and Js it is easy to see that

G(~x, t, λ) = exp

(
−iKt− i

p∑
s=1

xsJs

)
G(~0, 0, λ) exp

(
iKt+ i

p∑
s=1

xsJs

)
. (5)

We assume that G(~0, 0, λ) is a smooth bounded function of λ ∈ R and as a consequence it follows
that G(~x, t, λ) is a smooth bounded function of λ ∈ R for all ~x and t.

Remark 2. The canonical normalization (4) along with the analyticity properties of the solutions
ensure that ξ±(~x, λ) allow asymptotic expansions of the form:

ξ±(~x, λ) = exp (Q(~x, t, λ)) , Q(~x, t, λ) =

∞∑
k=1

Qk(~x, t)λ
−k. (6)

where Qk(~x, t) are smooth functions of ~x and t vanishing fast enough for ~x→∞. The rigorous
proof of this fact is out of the scope of the present paper.

It is obvious that

Js(~x, t, λ) = ξ±(~x, t, λ)Jsξ̂
±(~x, t, λ), K(~x, t, λ) = ξ±(~x, t, λ)Kξ̂±(~x, t, λ), (7)

belong to the algebra g for any Js and K from g and allow analytic extensions for λ ∈ C±; here
ξ̂ ≡ ξ−1. Since K and Js belong to the Cartan subalgebra h, then

[Js(~x, t, λ),K(~x, t, λ)] = 0. (8)

Physics and Mathematics of Nonlinear Phenomena 2013 (PMNP2013) IOP Publishing
Journal of Physics: Conference Series 482 (2014) 012017 doi:10.1088/1742-6596/482/1/012017

2



Theorem 1 (Zakharov-Shabat, 1974). Let ξ±(x, t, λ) be solutions to the RHP (3) whose sewing
function depends on the auxiliary variables ~x and t as above. Then ξ±(x, t, λ) are fundamental
analytic solutions of the set of differential operators

Lsξ
± ≡i∂ξ

±

∂xs
+ [Js, Q1(~x, t, λ)]ξ±(~x, t, λ)− λ[Js, ξ

±(~x, t, λ)] = 0,

Mξ± ≡i∂ξ
±

∂t
+ [K,Q1(~x, t, λ)]ξ±(~x, t, λ)− λ[K, ξ±(~x, t, λ)] = 0.

(9)

where Q1(~x, λ) is the first nontrivial coefficient in the asymptotic expansion (6) of ξ±(~x, t, λ).

Proof. Introduce the functions:

g±s (~x, t, λ) = i
∂ξ±

∂xs
ξ̂±(~x, t, λ) + λξ±(~x, t, λ)Jsξ̂

±(~x, t, λ),

g±(~x, t, λ) = i
∂ξ±

∂t
ξ̂±(~x, t, λ) + λξ±(~x, t, λ)Kξ̂±(~x, t, λ),

(10)

and using (2) prove that

g+
s (~x, t, λ) = g−s (~x, t, λ), g+(~x, t, λ) = g−(~x, t, λ), λ ∈ Γ, (11)

which means that these functions are analytic functions of λ in the whole complex λ-plane. Next
we find that for λ→∞:

lim
λ→∞

(g±s (~x, t, λ)− λJs) = −[Js, Q(~x, t)], lim
λ→∞

g±(~x, t, λ)− λK) = −[Js, Q(~x, t)]. (12)

Then we make use of Liouville theorem to get

g+
s (~x, t, λ) = g−s (~x, t, λ) = λJs − [Js, Q1(~x, t)],

g+(~x, t, λ) = g−(~x, t, λ) = λK − [K,Q1(~x, t)].
(13)

Lemma 1. The set of operators Ls and M have a common FAS, i.e. they all must commute,
that is Q1(~x, t) satisfies the following NLEE:

i

[
Jk,

∂Q1

∂xs

]
− i

[
Js,

∂Q1

∂xk

]
+ [[Js, Q1(~x, t)], [Jk, Q1(~x, t)]] = 0, (14a)

i

[
Js,

∂Q1

∂t

]
− i

[
K,

∂Q1

∂xs

]
+ [[Js, Q1(~x, t)], [K,Q1(~x, t)]] = 0, (14b)

Proof. Follows naturally from the definitions of the operators Ls and M (9).

2.2. RHP and Operators of Caudry-Beals-Coifman type
In this Subsection we consider more complicated RHP which is formulated as follows.

• First we introduce the complex valued elements K and Js of the Cartan subalgebra. The
conditions [13]

Imλα(J) = 0, α ∈ ∆, (15)

where ∆ is the root system of g, gives a set of M straight lines, or equivalently, a set of 2M

rays lν starting from the origin. We then define the contour as Γ ≡
2M
∪
ν=1

lν .
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• To each ray lν (15) one can associate the subset of roots δν ⊂ ∆ and the corresponding
subalgebra gν ⊂ g. Then the corresponding sewing function takes values in the
corresponding subgroup Gν(~x, t, λ) ∈ Gν and are bounded functions for λ ∈ lν , see remark 1.

The rest of the details are the same as in the previous Subsection. Quite similarly is formulated
the generalization of the Zakharov-Shabat theorem. The family of commuting operators formally
coincides with the ones in eqs. (9); the difference is that now the Cartan subalgebra elements are
complex. As a result however, the operator L in (9) takes the form of a CBC system [2, 1, 13].

2.3. Jets of order k
Another natural generalization consists in formulating the RHP on the complex plane of λ.

ξ+(~x, t, λ) = ξ−(~x, t, λ)G(~x, t, λ), for λk ∈ R, (16)

with the canonical normalization (4).
The Zaharov-Shabat method can easily be generalized also for the RHP (16). The result is

formulated as

Theorem 2. Let ξ±(x, t, λ) be solutions to the RHP (16) whose sewing function depends on the
auxiliary variables ~x and t as follows:

i
∂G

∂t
− λk[K,G(~x, t, λ)] = 0, i

∂G

∂xs
− λk[Js, G(~x, t, λ)] = 0, λ ∈ Γ, (17)

where K and Js belong to the Cartan subalgebra h ∈ g. Then ξ±(x, t, λ) are fundamental analytic
solutions of the set of differential operators

Lsξ
± ≡i∂ξ

±

∂xs
+ Us(~x, t, λ)ξ±(~x, t, λ)− λk[Js, ξ±(~x, t, λ)] = 0,

Mξ± ≡i∂ξ
±

∂t
+ V (~x, t, λ)ξ±(~x, t, λ)− λk[K, ξ±(~x, t, λ)] = 0.

(18)

Here Us(~x, t, λ) and V (~x, t, λ) are the jets of order k of Js(x, λ) and K(x, λ), i.e.:

λkJs − Us(~x, t, λ) =
(
λkξ±(~x, t, λ)Jlξ̂

±(~x, t, λ)
)

+
,

λkK − V (~x, t, λ) =
(
λkξ±(~x, t, λ)Kξ̂±(~x, t, λ)

)
+
.

(19)

where the subscript + means that we retain only the nonnegative powers of λ.

Proof. Introduce the functions:

g±s (~x, t, λ) = i
∂ξ±

∂xs
ξ̂±(~x, t, λ) + λkξ±(~x, t, λ)Jsξ̂

±(~x, t, λ),

g±(~x, t, λ) = i
∂ξ±

∂t
ξ̂±(~x, t, λ) + λkξ±(~x, t, λ)Kξ̂±(~x, t, λ),

(20)

and using (16) and (17) prove that

g+
s (~x, t, λ) = g−s (~x, t, λ), g+(~x, t, λ) = g−(~x, t, λ). (21)

Thus we find that these functions are analytic functions of λ in the whole complex λk-plane.
Next we find that:

lim
λ→∞

g+
s (~x, t, λ) = λkJs, lim

λ→∞
g+(~x, t, λ) = λkK. (22)
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and make use of Liouville theorem to get

g+
s (~x, t, λ) = g−s (~x, t, λ) = λkJs −

k∑
l=1

Us;l(~x, t)λ
k−l,

g+(~x, t, λ) = g−(~x, t, λ) = λkK −
k∑
l=1

Vl(~x, t)λ
k−l.

(23)

Let us now express Us(x) ∈ g in terms of the asymptotic coefficients Qs in eq. (6).

Js(~x, t, λ) = Js +
∞∑
k=1

1

k!
ad k
QJs, K(~x, t, λ) = K +

∞∑
k=1

1

k!
ad k
QK. (24)

Thus for the first three coefficients of Us(~x, t, λ) we get:

Us;1(~x, t) = −adQ1Js, Us;2(~x, t) = −adQ2Js −
1

2
ad 2

Q1
Js

Us;3(~x, t) = −adQ3Js −
1

2
(adQ2adQ1 + adQ1adQ2) Js −

1

6
ad 3

Q1
Js,

(25)

and similar expressions for V (~x, t, λ) with Js replaced by K.

Lemma 2. The set of operators Ls and M (18) have a common FAS, i.e. they all must commute,
that is, the set of functions Q1(~x, t), . . . , Qk(~x, t) satisfy the following NLEE:

i
∂Us
∂xj
− i∂Uj

∂xs
+ [Us(~x, t, λ)− λkJs, Uj(~x, t, λ)− λkJj ] = 0,

i
∂Us
∂t
− i ∂V

∂xs
+ [Us(~x, t, λ)− λkJs, V (~x, t, λ)− λkK] = 0.

(26)

Proof. Follows naturally from the definitions of the operators Ls and M (18).

Remark 3. Obviously one can use families of operators with different maximal powers of λ.
Using them one can derive not only the relevant N -wave type equations, but also the higher order
NLEE of the hierarchy.

Remark 4. Considering RHP of the form (16) one must take special care of the behavior of
the solutions when λ→ 0. We are not going to discuss here the conditions that are necessary to
impose so that the RHP will be properly defined leving it for the future.

3. Examples of new types of N-wave interactions
The integrability of the well known N -wave equations in two-dimensional space-time was
discovered by Zakharov and Manakov [19]. To this end they used the Lax pair

Lχ ≡ i∂χ
∂x

+ ([J,Q(x, t)]− λJ)χ(x, t, λ) = 0,

Mχ ≡ i∂χ
∂t

+ ([K,Q(x, t)]− λK)χ(x, t, λ) = −λχ(x, t, λ)K,

J = diag (a1, a2, . . . , an), K = diag (b1, b2, . . . , bn),

(27)

Physics and Mathematics of Nonlinear Phenomena 2013 (PMNP2013) IOP Publishing
Journal of Physics: Conference Series 482 (2014) 012017 doi:10.1088/1742-6596/482/1/012017

5



where the potential Q(x, t∆) is a n× n matrix with Qkk = 0. The compatibility of this pair is

i

[
J,
∂Q

∂t

]
− i
[
K,

∂Q

∂x

]
+ [[J,Q(x, t)], [K,Q(x, t)]] = 0. (28)

which is a system of n(n − 1) equations for the off-diagonal elements of Q(x, t). This system
admits the natural reduction C0QC0 = q† where C0 = diag (1, ε1, . . . εn−1) and εk = ±1. After
the N -wave system (28) reduces to n(n− 1)/2 equations for Qkm(x, t), k < m.

The N -wave are easily generalized to any other simple Lie algebra, see [5]. Indeed, let us
consider the simple Lie algebra g of rank r with root system ∆ and Cartan-Weyl basis Hs, Eα,
α ∈ ∆; assume also that the Cartan generators Hs satisfy 〈Hs, Hk〉 = δsk. Then consider the
Lax pair

Lχ ≡ i∂χ
∂x

+ ([J,Q(x, t)]− λJ)χ(x, t, λ) = 0,

Mχ ≡ i∂χ
∂t

+ ([K,Q(x, t)]− λK)χ(x, t, λ) = −λχ(x, t, λ)K,

J =
r∑
s=1

asHs, K =
r∑
s=1

bsHs, Q(x, t) =
∑
α∈∆+

(qα(x, t)Eα + pα(x, t)E−α),

(29)

where ∆+ ⊂ ∆ is the subset of positive roots.
The N -wave equations have as Hamiltonian

HNw =
1

2i

∫ ∞
x=−∞

dx

〈
Q,

[
K,

∂Q

∂x

]〉
+

1

3

∫ ∞
x=−∞

dx 〈[J,Q], [Q, [K,Q]]〉 , (30)

where 〈X,Y 〉 is the Killing form between the elements X,Y ∈ g. So typically one may say that a
given set of NLEE are of N -wave type if: i) they are contain first order derivatives with respect
to x and t; ii) the coefficients ak and bk are real which physically means that the group velocity
of each of these waves is real; and iii) the nonlinearities in the equations are quadratic in the
fields qα.

These types of N -wave equations were known for a long time. A number of their inequivalent
Z2-reductions for the low-rank Lie algebras were described in [11]. Obviously, using the ISM
one can show, that in terms of the scattering data of L these equations become linear evolution
equations. Note that the scattering data of L are determined through the scattering matrix
T (λ, t) for λ ∈ R – the continuous spectrum of L, and some additional data characterizing the
discrete spectrum of L. The inverse scattering problem for the operator L is best of all reduced
to a RHP (3) on the real line.

Our aim in this Section is to demonstrate new examples of qualitatively different N -wave
equations which are also integrable.

3.1. CBC systems and 4-wave equations with complex group velocities, k = 1.
The 4-wave equations below can be solved by the ISM applied to two operators of CBC type
related to the g ' so(5) algebra. So we consider the Lax pair (29) with

J = diag (a1,−a∗1, 0, a∗1,−a1), K = diag (a∗1,−a1, 0, a1,−a∗1),

Q(x, t) =
∑

α∈∆1,+

(qαEα + pαE−α) =


0 q1 q2 q4 0
p1 0 q3 0 q4

p2 p3 0 q3 −q2

p2 p3 0 q3 −q2

p4 0 p3 0 q1

0 p4 −p2 p1 0

 .
(31)
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Here a1 is a complex number that can be assumed to be a1 = eiϕ0 and ∆1,+ ≡ {e1 ± e2, e1, e2}
is the set of positive roots of the algebra so(5).

The important difference between (31) and the Lax pair (27) for g ' so(5) is that now J
and K have complex eigenvalues. As a consequence of this the continuous spectrum of L1 and
M1 fills up the real axis R and two lines Re±iϕ0 closing angles ±φ0 with R. Again the ISP for
the operator L1 reduces to a RHP, whose solution consists of 6 fundamental analytic solutions
χν(x, t, λ), ν = 1, . . . , 6 – one for each of the 6 sectors Ων into which the lines R and Re±iϕ0

split the complex λ-plane.
We need in addition a Z2-reduction which must relate qj and pj ; several types of such

reductions have been described in [11]. However the reduction we will use below

C1Q(x, t)†C1 = Q(x, t), C1J
†C1 = −J, C1K

†C1 = −K, (32)

where C1 = E12 +E21 +E33 −E45 −E54 corresponds to the Weyl reflection with respect to the
root e1 − e2. This involution leads to a set of algebraic constraints on qj(x, t) and pj(x, t). For
convenience we introduce

p1(x, t) = w0(x, t), q1(x, t) = w1(x, t), q2(x, t) = w2(x, t), q3(x, t) = w1(x, t),

q4(x, t) = w4(x, t), p2(x, t) = w∗3(x, t), p3(x, t) = w∗2(x, t), p4(x, t) = −w∗4(x, t),
(33)

where w0(x, t) and w1(x, t) are real-valued functions. Thus instead of the standard 4 complex-
valued functions for the 4-wave system (see eqs. (36) and (37) below) we have 2 real and 3
complex-valued functions. The corresponding new 4-wave eqs are:

∂w0

∂t
− c0

∂w0

∂x
+ 2c0 sin(ϕ0)|w3|2 = 0,

∂w1

∂t
− c0

∂w1

∂x
+ 2c0 sin(ϕ0)|w2|2 = 0,

∂w2

∂t
− c0e

−2iϕ0
∂w2

∂x
+ 2c0e

−2iϕ0 sin(2ϕ0)(w∗2w4 − w1w3) = 0,

∂w3

∂t
− c0e

2iϕ0
∂w3

∂x
− 2c0e

2iϕ0 sin(2ϕ0)(w0w2 + w∗3w4) = 0,

∂w4

∂t
+ ic0

∂w4

∂x
− 2c0 cos(ϕ0)w2w3 = 0.

(34)

The Hamiltonian is given by:

H4w−1 =
c0

2

∫ ∞
x=−∞

dx

〈
Q,

[
K,

∂Q

∂x

]〉
− ic0

3

∫ ∞
x=−∞

dx 〈[J,Q], [Q, [K,Q]]〉

= c0

∫ ∞
x=−∞

dx

(
2 cos(ϕ0)

(
w1
∂w0

∂x
− w0

∂w1

∂x

)
− i sin(ϕ0)

(
w∗4
∂w4

∂x
− w4

∂w∗4
∂x

)
−e−iϕ0w∗3

∂w2

∂x
− eiϕ0w3

∂w∗2
∂x
− 4 sin(2ϕ0)

(
w0|w2|2 − w1|w3|2 + w2w3w

∗
4 + w∗2w

∗
3w4

))
. (35)

Let us briefly compare the new 4-wave system (34) with the well known 4-wave system (see
Chapter 3 of [20]) which are obtained with the generalized Zakharov-Shabat system with real
valued J = a1H1 + a2H2 and K = b1H1 + b2H2 and with the standard reduction pk = q∗k:

i
∂q1

∂t
− i b1 − b2

a1 − a2

∂q1

∂x
− κq2q

∗
3 = 0, i

∂q4

∂t
− i b1 + b2

a1 + a2

∂q4

∂x
+ κq2q3 = 0,

i
∂q2

∂t
− i b1

a1

∂q2

∂x
+ κ(q1q3 − q∗3q4) = 0, i

∂q1

∂t
− i b2

a2

∂q1

∂x
− κ(q∗2q4 − q2q

∗
1) = 0,

(36)
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where κ = a1b2 − a2b1. The Hamiltonian is

H4w−2 = i

∫ ∞
x=−∞

dx

(
(b1 − b2)

(
q1
∂q∗1
∂x
− q∗1

∂q1

∂x

)
+ (b1 + b2)

(
q∗4
∂q4

∂x
− q4

∂q∗4
∂x

)
+b1

(
q2
∂q∗2
∂x
− q∗2

∂q2

∂x

)
+ b2

(
q3
∂q∗3
∂x
− q∗3

∂q3

∂x

))
− 2κ

∫ ∞
x=−∞

dx (q1q
∗
2q3 − q∗1q2q

∗
3 + q2q3q

∗
4 − q∗2q3q

∗
4) .

(37)

The obvious differences are: i) the new 4-wave equation is a system of equations for 3 complex
fields w2, w3, w4 and 2 real fields q1/a1, a1p1 (instead of 4 complex fields qα); ii) the group
velocities are now complex (instead of real); iii) the interaction ‘strength’ between the different
waves is different (instead of being equal to κ).

Of course there will be differences between the soliton solutions, but these will be given
elsewhere.

3.2. New types of 3-wave interactions, k = 2.
Let g = sl(3) and

Q1(~x, t) =

 0 u1 u3

−v1 0 u2

−v3 −v2 0

 , Q2(~x, t) =

 q11 w1 w3

−z1 q22 w2

−z3 −z2 q33

 , (38)

Fix up k = 2. Then the Lax pair becomes

Lξ± ≡ i∂ξ
±

∂x
+ U(x, t, λ)ξ±(x, t, λ)− λ2[J, ξ±(x, t, λ)] = 0,

Mξ± ≡ i∂ξ
±

∂t
+ V (x, t, λ)ξ±(x, t, λ)− λ2[K, ξ±(x, t, λ)] = 0,

(39)

where

U ≡ U2 + λU1 =

(
[J,Q2(x)]− 1

2
[[J,Q1], Q1(x)]

)
+ λ[J,Q1],

V ≡ V2 + λV1 =

(
[K,Q2(x)]− 1

2
[[K,Q1], Q1(x)]

)
+ λ[K,Q1].

(40)

Impose a Z2-reduction of type a) with A = diag (1, ε, 1), ε2 = 1. Thus Q1 and Q2 get reduced
into:

Q1 =

 0 u1 0
εu∗1 0 u2

0 εu∗2 0

 , Q2 =

 0 0 w3

0 0 0
w∗3 0 0

 , (41)

New type of integrable 3-wave equations:

i(a1 − a2)
∂u1

∂t
− i(b1 − b2)

∂u1

∂x
+ εκu∗2u3 + ε

κ(a1 − a2)

(a1 − a3)
u1|u2|2 = 0,

i(a2 − a3)
∂u2

∂t
− i(b2 − b3)

∂u2

∂x
+ εκu∗1u3 − ε

κ(a2 − a3)

(a1 − a3)
|u1|2u2 = 0,

i(a1 − a3)
∂u3

∂t
− i(b1 − b3)

∂u3

∂x
− iκ

a1 − a3

∂(u1u2)

∂x

+ εκ

(
a1 − a2

a1 − a3
|u1|2 +

a2 − a3

a1 − a3
|u2|2

)
u1u2 + εκu3(|u1|2 − |u2|2) = 0,

(42)
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where the interaction constant κ and u3 are given by:

κ =
1

2
(a1b3 − a2b3 − a1b2 − b1a3 + b1a2 + b2a3) , u3 = w3 +

2a2 − a1 − a3

2(a1 − a3)
u1u2. (43)

The diagonal terms in the Lax representation are λ-independent. Two of them read:

i(a1 − a2)
∂|u1|2

∂t
− i(b1 − b2)

∂|u1|2

∂x
− εκ(u1u2u

∗
3 − u∗1u∗2u3) = 0,

i(a2 − a3)
∂|u2|2

∂t
− i(b2 − b3)

∂|u2|2

∂x
− εκ(u1u2u

∗
3 − u∗1u∗2u3) = 0,

(44)

These relations are satisfied identically as a consequence of the NLEE.

3.3. New types of 3-wave interactions, k = 3.
Our last example of 3-wave interactions is similar to the one, reported in [12] and involves Lax
pair, which is cubic in λ:

U(x, t, λ) = λU2(x, t) + λ2U1(x, t)− λ3J, V (x, t, λ) = λV2(x, t) + λ2V1(x, t)− λ3K, (45)

where
J = diag (a1, a2, a3), K = diag (b1, b2, b3),

U1(x, t) =

 0 0 u13

u21 0 0
0 u32 0

 , U2(x, t) =

 0 u12 0
0 0 u23

u31 0 0

 ,

V1(x, t) =

 0 0 v13

v21 0 0
0 v32 0

 , V1(x, t) =

 0 v12 0
0 0 v23

v31 0 0

 ,

(46)

With this choice U and V automatically satisfy the reduction condition [17]

C3Uk(x, t)C
−1
3 = ωkUk(x, t), C3Vk(x, t)C

−1
3 = ωkVk(x, t), C3 = diag (1, ω, ω2), (47)

with ω = exp(2πi/3). We can also impose the involution

C2U
†
k(x, t)C−1

2 = εk+1Uk(x, t), C2V
†
k (x, t)C−1

2 = εk+1Vk(x, t), C2 =

 0 0 1
0 ε1 0
1 0 0

 (48)

with ε = ±1, ε1 = ±1 which gives:

u12 = ε1εu
∗
23, u∗31 = εu31, u∗13 = u13, u21 = ε1u

∗
32,

a∗1 = εa3, a2 = εa∗2, b∗3 = εb1, b∗2 = εb2.
(49)

and analogous relations for vij . The compatibility condition now gives:
Introduce also the coefficients Q1,2 which automatically satisfy the above reductions:

Q1(x, t) =

 0 0 R1

w1 0 0
0 −εε1w∗1 0

 , Q2(x, t) =

 0 w2 0
0 0 −ε1w∗2
R2 0 0

 , R1 = −εR∗1, R2 = −R∗2

(50)
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Thus we get the following parametrization for Uk and Vk

U1(x, t) = [Q1(x, t), J ], U2(x, t) = [Q2(x, t), J ] +
1

2
[Q1(x, t), [Q1(x, t), J ]],

V1(x, t) = [Q1(x, t),K], V2(x, t) = [Q2(x, t),K] +
1

2
[Q1(x, t), [Q1(x, t),K]],

(51)

or in components:

u13 = (a3 − a1)R1, u12 = (a2 − a1)w2 −
1

2
εε1(a1 + a2 − 2a3)w∗1R1,

u21 = (a1 − a2)w1, u23 = ε1(a2 − a3)w∗2 +
1

2
(a2 + a3 − 2a1)w1R1,

u32 = εε1(a3 − a2)w∗1, u31 = (a1 − a3)R2 −
1

2
εε1(a1 + a3 − 2a2)|w1|2.

(52)

The expressions for vjk differ from (52) only by replacing ak by bk.
The corresponding NLEE take the form:

∂R1

∂t
− b1 − b3
a1 − a3

∂R1

∂x
+

εε1
a1 − a3

(u12v
∗
12 − v12u

∗
12) = 0,

∂u12

∂t
− ∂v12

∂x
= 0,

i
∂w1

∂t
− i b1 − b2

a1 − a2

∂w1

∂x
+

ε1ε

a1 − a2
(u∗12v31 − v∗12u31) = 0,

∂u31

∂t
− ∂v31

∂x
= 0.

(53)

Inserting here the notations from eq. (52) we obtain the four NLEE for the four independent
functions w1, w2, R1 and R2.

4. Conclusions and open questions
We proposed a method for constructing new integrable NLEE based on the use of the RHP with
canonical normalization combined with the Mikhailov’s reduction group [16, 17]. Obviously we
can derive many new classes of such equations making appropriate choices of the: i) the order
k of the jets, ii) the simple Lie algebra g and iii) the reduction group and its realization as a
subgroup of the group of automorphisms of g.

Since the method is based on the RHP one can apply Zakharov-Shabat dressing method for
constructing their explicit (N -soliton) solutions.

The new NLEE are expected to be Hamiltonian. So one must show that the jets U(~x, t, λ) can
be viewed as elements of more complicated co-adjoint orbits of the relevant Kac-Moody algebra,
generated by the chosen grading of f. The corresponding Poisson brackets can be derived using
the results of Kulish and Reyman [15] and imposing the reduction conditions as constraints.

The last but not least important problem concerns the possible physical applications of these
equations.
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