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Abstract. We study the solutions of the one dimensional focusing NLS equation. Here we
construct new deformations of the Peregrine breather of order 7 with 12 real parameters. We
obtain new families of quasi-rational solutions of the NLS equation. With this method, we
construct new patterns of different types of rogue waves. We recover triangular configurations
as well as rings isolated. As already seen in the previous studies, one sees appearing for certain
values of the parameters, new configurations of concentric rings.

1. Introduction
The nonlinear Schrödinger equation was first solved by Zakharov and Shabat [1] in 1972 by
the inverse scattering method. The first expressions of the quasi-rational solutions were given
by Peregrine [2] in 1983. From this time, a considerable number of studies were carried out.
Eleonski, Akhmediev and Kulagin obtained the first higher order analogue of the Peregrine
breather [3] in 1986. Akhmediev et al. [4, 5], constructed other analogues of order 3 and 4,
using Darboux transformations.
Rational solutions of the NLS equation have been written in 2010, as a quotient of two
Wronskians in [6]. An other representation of the solutions of the NLS equation has been
constructed in [7] in 2011, also in terms of a ratio of two Wronskians determinants of order 2N .
In 2012, Guo, Ling and Liu constructed an other representation of the solutions of the focusing
NLS equation, as a ratio of two determinants has been given in [8] using generalized Darboux
transform.
In the same year, Ohta and Yang [9] have given a new approach where solutions of the focusing
NLS equation by means of a determinant representation, obtained from Hirota bilinear method.
A the beginning of the year 2012, one obtained a representation in terms of determinants which
does not involve limits [10].
The two formulations given in [7, 10] did depend in fact only on two parameters; this remark
was first made by V.B. Matveev. Then we found for the order N (for determinants of order
2N), solutions depending on 2N − 2 real parameters.
In this article, we restrict ourself the study to the case of the solutions of NLS of order 7; because
of the constraints of the publication, we do not have the space to publish all the deformations.
With this new method, we construct news deformations at order 7 with 12 real parameters. The
explicit representation in terms of polynomials is found, but is too monstrous to be published.
One constructs various drawings to illustrate the evolution of the solutions according to the
parameters. One obtains at the same time triangular configurations and ring structures with
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a maximum of 28 peaks. These deformations are completely new and gives by new patterns a
better understanding of the NLS equation.

2. Determinant representation of solutions of NLS equation
We recall the results obtained in [7] and [10]. We consider the focusing NLS equation

ivt + vxx + 2|v|2v = 0. (1)

In the following, we consider 2N parameters λν , ν = 1, . . . , 2N satisfying the relations

0 < λj < 1, λN+j = −λj , 1 ≤ j ≤ N. (2)

We define the terms κν , δν , γν by the following equations,

κν = 2
√

1− λ2ν , δν = κνλν , γν =

√
1− λν
1 + λν

, (3)

and

κN+j = κj , δN+j = −δj , γN+j = 1/γj , j = 1 . . . N. (4)

The terms xr,ν (r = 3, 1) are defined by

xr,ν = (r − 1) ln
γν − i
γν + i

, 1 ≤ j ≤ 2N. (5)

The parameters eν are defined by

ej = iaj − bj , eN+j = iaj + bj , 1 ≤ j ≤ N, (6)

where aj and bj , for 1 ≤ j ≤ N are arbitrary real numbers.
We use the following notations :

Aν = κνx/2 + iδνt− ix3,ν/2− ieν/2,
Bν = κνx/2 + iδνt− ix1,ν/2− ieν/2,

(7)

for 1 ≤ ν ≤ 2N , with κν , δν , xr,ν defined in (3), (4) and (5).
The parameters eν are defined by (6).
Here, the parameters aj and bj , for 1 ≤ N are chosen in the form

aj =
N−1∑
k=1

ãkε
2k+1j2k+1, bj =

N−1∑
k=1

b̃kε
2k+1j2k+1, 1 ≤ j ≤ N. (8)

We consider the following functions :

f4j+1,k = γ4j−1
k sinAk, f4j+2,k = γ4jk cosAk,

f4j+3,k = −γ4j+1
k sinAk, f4j+4,k = −γ4j+2

k cosAk,
(9)

for 1 ≤ k ≤ N , and

f4j+1,N+k = γ2N−4j−2
k cosAN+k, f4j+2,N+k = −γ2N−4j−3

k sinAN+k,

f4j+3,N+k = −γ2N−4j−4
k cosAN+k, f4j+4,N+k = γ2N−4j−5

k sinAN+k,
(10)
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for 1 ≤ k ≤ N .
We define the functions gj,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way, we replace only the
term Ak by Bk.

g4j+1,k = γ4j−1
k sinBk, g4j+2,k = γ4jk cosBk,

g4j+3,k = −γ4j+1
k sinBk, g4j+4,k = −γ4j+2

k cosBk,
(11)

for 1 ≤ k ≤ N , and

g4j+1,N+k = γ2N−4j−2
k cosBN+k, g4j+2,N+k = −γ2N−4j−3

k sinBN+k,

g4j+3,N+k = −γ2N−4j−4
k cosBN+k, g4j+4,N+k = γ2N−4j−5

k sinBN+k,
(12)

for 1 ≤ k ≤ N .
Then we get the following result :

Theorem 2.1 The function v defined by

v(x, t) =
det((njk)j,k∈[1,2N ]

)

det((djk)j,k∈[1,2N ]
)
e2it−iϕ (13)

is a quasi-rational solution of the NLS equation (1)

ivt + vxx + 2|v|2v = 0,

depending on 2N − 2 parameters ãj, b̃j, 1 ≤ j ≤ N − 1, where

nj1 = fj,1(x, t, 0), njk =
∂2k−2fj,1
∂ε2k−2 (x, t, 0),

njN+1 = fj,N+1(x, t, 0), njN+k =
∂2k−2fj,N+1

∂ε2k−2 (x, t, 0),

dj1 = gj,1(x, t, 0), djk =
∂2k−2gj,1
∂ε2k−2 (x, t, 0),

djN+1 = gj,N+1(x, t, 0), djN+k =
∂2k−2gj,N+1

∂ε2k−2 (x, t, 0),
2 ≤ k ≤ N, 1 ≤ j ≤ 2N

(14)

The functions f and g are defined in (9),(10), (11), (12).

We don’t have the space to give the proof in this publication. We will give it in an other
forthcoming paper.
The solutions of the NLS equation can also be written in the form :

v(x, t) = exp(2it− iϕ)×Q(x, t)

where Q(x, t) is defined by :

Q(x, t) :=

∣∣∣∣∣∣∣∣∣
f1,1[0] . . . f1,1[N − 1] f1,N+1[0] . . . f1,N+1[N − 1]
f2,1[0] . . . f2,1[N − 1] f2,N+1[0] . . . f2,N+1[N − 1]

...
...

...
...

...
...

f2N,1[0] . . . f2N,1[N − 1] f2N,N+1[0] . . . f2N,N+1[N − 1]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
g1,1[0] . . . g1,1[N − 1] g1,N+1[0] . . . g1,N+1[N − 1]
g2,1[0] . . . g2,1[N − 1] g2,N+1[0] . . . g2,N+1[N − 1]

...
...

...
...

...
...

g2N,1[0] . . . g2N,1[N − 1] g2N,N+1[0] . . . g2N,N+1[N − 1]

∣∣∣∣∣∣∣∣∣

(15)
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3. Quasi-rational solutions of order 7 with twelve parameters
Wa have already constructed in [7] solutions for the cases from N = 1 until N = 6, and in [10]
with two parameters.
Because of the length of the expression v of the solution of NLS equation with 12 parameters, we
can’t give here. We only construct figures to show deformations of the analogue of the seventh
Peregrine breather; in the following we will call it for simplicity, the seventh Peregrine breather.
Conversely to the study with two parameters given in preceding works [7, 10], we get other
type of symmetries in the plots in the (x, t) plane. We give some examples of this fact in the
following.
It is important to note the similar role played by the parameters ãj and b̃j for a same j; the
same configuration of the peaks is obtained. For this reason one will give the figures only for
a parameter ãj or b̃j . On the other hand, to understand the configuration for a value of the
parameter, one will give two sights to see the distribution of the peaks.
With different choices of parameters, we obtain all types of configurations : triangles, rings and
concentric rings with a maximum of 28 peaks.

Figure 1. Solution of NLS, N=7; all parameters equal to 0, the Peregrine breather of order 7,
P7.

Figure 2. Solution of NLS, N=7; b̃1 = 104; we obtain a regular triangle with 28 peaks; on the
right, sight of top.
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Figure 3. Solution of NLS, N=7; ã2 = 106, 3 rings with respectively 5, 10, 10 peaks with in
the center the Peregrine of order 2, P2; on the right, sight of top.

Figure 4. Solution of NLS, N=7; b̃3 = 1010, 4 rings with 7 peaks on each of them without
central peak; on the right, sight of top.

Figure 5. Solution of NLS, N=7; ã4 = 1010, 3 rings with 9 peaks on each of them with in the
center one peak; on the right, sight of top.
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Figure 6. Solution of NLS, N=7; b̃5 = 1015, 2 rings of 11 peaks with in the center the Peregrine
breather of order 3, P3; on the right, sight of top.

Figure 7. Solution of NLS, N=7; ã6 = 1012, b̃6 = −108, a ring with 13 peaks and in the center
the Peregrine breather of order 5, P5; on the right, sight of top.

4. Conclusion
We have constructed explicitly solutions of the NLS equation of order N with 2N − 2 real
parameters. The expressions in terms of polynomials in x and t are too monstrous to be published
in this paper.
It is important to note the symmetrical role played by the parameters ãj and b̃j ; the

configurations obtained for one of these two parameters ãj or b̃j for the index j are the same

ones. Thus for each couple (ãj ; b̃j) we have only built one associated figure for only for one

parameter, ãj 6= 0, or b̃j 6= 0.
In the cases a1 6= 0 or b1 6= 0 we obtain triangles with a maximum of 28 peaks; for a2 6= 0 or
b2 6= 0, we have 3 concentric rings with two of them with 10 peaks and an other with 5 peaks
with in the center the Peregrine P2 with 3 peaks. For a3 6= 0 or b3 6= 0, we obtain 4 concentric
rings without central peak with 7 peaks on each of them. For a4 6= 0 or b4 6= 0, we have 3
concentric rings with 9 peaks, with a in the center one peak. For a5 6= 0 or b5 6= 0, we obtain 2
concentric rings without central peak with 11 peaks on each of them and the appearance in the
center of the Peregrine breather P3 with 6 peaks. For a6 6= 0 or b6 6= 0, we have only one ring
with 13 peaks with inside the appearance of the Peregrine breather of order 5 with 15 peaks.
We obtained new patterns in the (x; t) plane, by different choices of these parameters; we
recognized rings configurations as already observed in the case of deformations depending on
two parameters [7, 10]. We get news triangular shapes and multi-concentric rings.
This study at the order 7 was never still carried out; it is completely new and makes it possible
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to provide a better understanding of the phenomena of rogue waves.
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